精英家教网 > 高中数学 > 题目详情
如图所示,AT切⊙O于T,若AT=2
6
,AE=3,AD=4,DE=2,则BC等于(  )
A、3B、4C、6D、8
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:利用AT为⊙O的切线,求出AT,证明△EAD∽△CAB,可得
DE
BC
=
AE
AC
,即可求出BC.
解答: 解:∵AT为⊙O的切线,∴AT2=AD•AC.
∵AT=2
6
,AD=4,∴AC=6.
∵∠ADE=∠B,∠EAD=∠CAB,
∴△EAD∽△CAB,即
DE
BC
=
AE
AC

∴BC=
DE•AC
AE
=
2×6
3
=4.
故选:B.
点评:本题考查切割线定理,考查三角形相似的判断与性质,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复平面内,复数z=
2+i
i2013
,则复数z的共轭复数
.
z
对应的点的象限是(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,点E,F,G分别是线段B1B,AB和A1C上的动点,观察直线CE与D1F,CE与D1G.给出下列结论:
①对于任意给定的点E,存在点F,使得D1F⊥CE;
②对于任意给定的点F,存在点E,使得CE⊥D1F;
③对于任意给定的点E,存在点G,使得D1G⊥CE;
④对于任意给定的点G,存在点E,使得CE⊥D1G.
其中正确结论的序号是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的个数是(  )
(1)若直线l上有无数个点不在α内,则l∥α
(2)若直线l与平面α平行,l与平面α内的任意一直线平行
(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行
(4)若一直线a和平面α内一直线b平行,则a∥α
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足a1=1,an+2an=39(n∈N*),那么数列{an}的前50项和S50的最小值为(  )
A、637
B、559
C、481+25
39
D、492+24
78

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图程序:如果输入5,则该程序运行结果为(  )
A、1B、10C、25D、26

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a3+a7=15,则a2+a8=(  )
A、10B、15C、12D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形ABCD的每条边和对角线的长都等于a,点M、N分别是边AB、CD的中点,求证:
(1)MN为AB和CD的公垂线;     
(2)求MN的长;
(3)求异面直线AN与CM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:(
1
2
)2+(
1
2
)4+(
1
2
)6+…+(
1
2
)n-1
(n为奇数).

查看答案和解析>>

同步练习册答案