精英家教网 > 高中数学 > 题目详情
10.设集合P={1,2,3,4},Q={x||x|≤3,x∈R},则P∩Q等于(  )
A.{1}B.{1,2,3}
C.{3,4}D.{-3,-2,-1,0,1,2,3}

分析 利用不等式的解法、集合运算性质即可得出.

解答 解:Q={x||x|≤3,x∈R}=[-3,3],P={1,2,3,4},
则P∩Q={1,2,3}.
故选:B.

点评 本题考查了不等式的解法、集合运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B、C两点,过B作AC的垂线交x轴于点D,若点D到直线BC的距离小于a+$\sqrt{{a}^{2}+{b}^{2}}$,则$\frac{b}{a}$的取值范围为(  )
A.(0,1)B.(1,+∞)C.(0,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{4}+\frac{y^2}{b^2}=1(\frac{{2\sqrt{3}}}{3}<b<2)$,动圆P:${(x-{x_0})^2}+{(y-{y_0})^2}=\frac{4}{3}$(圆心P为椭圆C上异于左右顶点的任意一点),过原点O作两条射线与圆P相切,分别交椭圆于M,N两点,且切线长的最小值为$\frac{{\sqrt{6}}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:△MON的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an},等比数列{bn}的前n项和为Sn,Tn(n∈N*),若Sn=$\frac{3}{2}$n2+$\frac{1}{2}$n,b1=a1,b2=a3,则an=3n-1,Tn=$\frac{2}{3}({4}^{n}-1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DA}$=$\overrightarrow{d}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,$\overrightarrow{b}$•$\overrightarrow{c}$=0,|$\overrightarrow{a}$|≠|$\overrightarrow{c}$|,试判定四边形ABCD是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=-x3+ax2-x-1在R上是单调函数,则实数a的取值范围是$[-\sqrt{3},\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=$\left\{\begin{array}{l}{f(x)x>0}\\{-f(x)x<0}\end{array}\right.$,求F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]恒成立,试求b取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线ax-y=0(a≠0)与函数$f(x)=\frac{{2{{cos}^2}x+1}}{{ln\frac{2+x}{2-x}}}$图象交于不同的两点A,B,且点C(6,0),若点D(m,n)满足$\overrightarrow{DA}+\overrightarrow{DB}=\overrightarrow{CD}$,则m+n=(  )
A.1B.2C.3D.a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=ex-|ln(-x)|的两个零点为x1,x2,则(  )
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

同步练习册答案