| A. | -4≤a≤1 | B. | -5≤a≤-4 | C. | 0≤a≤1 | D. | -5≤a≤-1 |
分析 先求出f(x)的零点,然后求出f(x)-a的值,作出函数f(x)的图象,利用数形结合以及排除法进行求解即可.
解答
解:当x≤0时,由f(x)=0得$\frac{x}{x-1}$=0,得x=0,
当x>0时,由f(x)=0得-x2+6x-5=0,得x=1或x=5,
由,y=f[f(x)-a]=0得f(x)-a=0或f(x)-a=1,或f(x)-a=5,
即f(x)=a,f(x)=a+1,f(x)=a+5,
作出函数f(x)的图象如图:
若a=0,则f(x)=0有3个根,f(x)=1有2个根,f(x)=5有0个根,此时共有5个根,不满足条件.排除A,C,
若a=-1,则f(x)=-1有2个根,f(x)=0有3个根,f(x)=4有1个根,此时共有6个根,满足条件.排除B,
故选:D.
点评 本题主要考查函数与方程的应用,求出函数的零点,利用数形结合以及分类讨论是解决本题的关键.本题由于难度较大,使用特殊值法和排除法是解决本题的技巧.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{1}{2}]$ | B. | [1,3] | C. | $[\frac{1}{2},1]$ | D. | (0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0,1,2} | B. | {0,1,2} | C. | {0,1} | D. | {1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com