精英家教网 > 高中数学 > 题目详情

【题目】某渔场有一边长为20m的正三角形湖面ABC(如图所示),计划筑一条笔直的堤坝DE将水面分成面积相等的两部分,以便进行两类水产品养殖试验(DAB上,EAC上).

(1)为了节约开支,堤坝应尽可能短,请问该如何设计?堤坝最短为多少?

(2)将DE设计为景观路线,堤坝应尽可能长,请问又该如何设计?

【答案】(1)当AD为时,堤坝最短;(2)当点D为AB中点或与点B重合时,堤坝最长

【解析】试题分析:

利用题意求得堤坝长的函数解析式结合导函数研究函数的性质可得当AD为时,堤坝最短;当点D为AB中点或与点B重合时,堤坝最长

试题解析:

设AD为米,则

得,

,则

得, 得,

单调递减,在单调递增,

∴当AD为时,堤坝最短

当点D为AB中点或与点B重合时,堤坝最长

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在点处的切线方程为,求的值;

(2)若在区间上,函数的图象恒在直线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面为菱形的直棱柱

中,

分别为棱

的中点.

(1)在图中作一个平面

,使得

,且平面

.(不必给出证明过程,只要求作出

与直棱柱

的截面).

(2)若

,求平面

与平面

的距离

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.

(1)求的直角坐标方程;

(2)直线为参数)与曲线交于两点,与轴交于,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,“延迟退休”已经成为人们越来越关心的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:

年龄

人数

4

5

8

5

3

年龄

人数

6

7

3

5

4

经调查年龄在的被调查者中赞成“延迟退休”的人数分别是3人和2人,现从这两组的被调查者中各随机选取2人,进行跟踪调查.

(Ⅰ)求年龄在的被调查者中选取的2人都赞成“延迟退休”的概率;

(Ⅱ)若选中的4人中,不赞成“延迟退休”的人数为求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过3500元的部分不纳税,超过3500元的部分为全月纳税所得额,此项税款按下表分段累计计算:

已知张先生的月工资、薪金所得为10000元,问他当月应缴纳多少个人所得税?

设王先生的月工资、薪金所得为元,当月应缴纳个人所得税为元,写出的函数关系式;

(3)已知王先生一月份应缴纳个人所得税为303元,那么他当月的个工资、薪金所得为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE-ED-DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①;②当时, ;③;④当秒时, ;⑤当的面积为时,时间的值是;其中正确的结论是( )

A. ①⑤ B. ②⑤ C. ②③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高职院校进行自主招生文化素质考试,考试内容为语文、数学、英语三科,总分为200分.现从上线的考生中随机抽取20人,将其成绩用茎叶图记录如下:

td style="width:16.2pt; padding:3.75pt 5.4pt; vertical-align:middle">

15

6

5

4

16

3

5

8

8

2

17

2

3

6

8

8

8

6

5

18

5

7

19

2

3

(Ⅰ)计算上线考生中抽取的男生成绩的方差;(结果精确到小数点后一位)

(Ⅱ)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知底角为的等腰梯形,底边长为12,腰长为,当一条垂直于底边 (垂足为)的直线从左至右移动(与梯形有公共点)时,直线把梯形分成两部分.

(1)令,试写出直线右边部分的面积的函数解析式;

(2)在(1)的条件下,令.构造函数

①判断函数上的单调性;

②判断函数在定义域内是否具有单调性,并说明理由.

查看答案和解析>>

同步练习册答案