精英家教网 > 高中数学 > 题目详情
13.同时掷两个均匀的正方体骰子,则向上的点数之和为5的概率为(  )
A.$\frac{1}{9}$B.$\frac{1}{18}$C.$\frac{2}{21}$D.$\frac{1}{6}$

分析 使用排列数公式计算基本事件个数和符合条件的基本事件个数,利用古典概型的概率计算公式计算概率.

解答 解:同时掷两个均匀的正方体骰子,共有${C}_{6}^{1}$•${C}_{6}^{1}$=36个基本事件,
其中向上的点数之和为5的基本事件共有4个,分别是(1,4),(2,3),(3,2)(4,1).
∴向上的点数之和为5的概率为P=$\frac{4}{36}=\frac{1}{9}$.
故选:A.

点评 本题考查了古典概型的概率计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知复数z=2-3i,$\overline{z}$表示复数z的共轭复数,则|$\frac{\overline{z}}{i+{i}^{2}}$|=$\frac{\sqrt{26}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=an•log2an,其前n项和为Sn,若(n-1)2≤m(Sn-n-1)对于n≥2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设数列{an}的各项均为正整数,其前n项和为Sn,我们称满足条件“对任意的m,n∈N*,均有(n-m)Sn+m=(n+m)(Sn-Sm)”的数列{an}为“L数列”.现已知数列{an}为“L数列”,且a2016=3000,则an=984+n或3000.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.[B]已知数列{an}的前n项和为Sn,且满足2Sn=4an+(n-4)(n+1)(n∈N+).
(1)计算a1,a2,a3,根据计算结果,猜想an的表达式;
(2)设数列{bn}满足(an-n)•bn=2n-1(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设x>0,y>0,若log23是log2x与log2y的等差中项,则$\frac{1}{x}$+$\frac{1}{y}$的最小值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.阅读下面的一段文字,并解决后面的问题:
我们可以从函数的角度来研究方程的解的个数的情况,例如,研究方程2x3-3x2-6=0的解的情况:因为方程2x3-3x2-6=0的同解方程有x3=$\frac{3}{2}{x^2}$+3,2x-3=$\frac{6}{x^2}$等多种形式,所以,我们既可以选用函数y=x3,y=$\frac{3}{2}{x^2}$+3,也可以选用函数y=2x-3,y=$\frac{6}{x^2}$,通过研究两函数图象的位置关系来研究方程的解的个数情况.因为函数的选择,往往决定了后续研究过程的难易程度,所以从函数的角度来研究方程的解的情况,首先要注意函数的选择.
请选择合适的函数来研究该方程$\frac{1}{x}$=$\frac{ax+b}{e^x}$的解的个数的情况,记k为该方程的解的个数.请写出k的所有可能取值,并对k的每一个取值,分别指出你所选用的函数,画出相应图象(不需求出a,b的数值).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}的前n项和为Sn,首项a1=1,且满足:2Sn=an+1-1,则a3+a4+a5=117.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\left\{\begin{array}{l}{ax+2,x≥2}\\{(\frac{1}{2})^{x}-1,x<2}\end{array}\right.$,对于任意的实数x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围为(  )
A.a<0B.a≤0C.a≤-$\frac{11}{8}$D.a<-$\frac{11}{8}$

查看答案和解析>>

同步练习册答案