精英家教网 > 高中数学 > 题目详情
1.设数列{an}的各项均为正整数,其前n项和为Sn,我们称满足条件“对任意的m,n∈N*,均有(n-m)Sn+m=(n+m)(Sn-Sm)”的数列{an}为“L数列”.现已知数列{an}为“L数列”,且a2016=3000,则an=984+n或3000.

分析 对任意的m,n∈N*,均有(n-m)Sn+m=(n+m)(Sn-Sm),令m=1,则(n-1)Sn+1=(n+1)(Sn-a1).化为nan+1=Sn+1+Sn-(n+1)a1,n≥2时,(n-1)an=Sn+Sn-1-na1,化为(n-1)an+1-nan=-a1,利用递推关系可得:an+1+an-1=2an.因此数列{an}是等差数列.由a2016=3000=a1+2015d,即3000-a1=2015d,由于数列{an}的各项均为正整数,可得d=0或1.即可得出.

解答 解:∵对任意的m,n∈N*,均有(n-m)Sn+m=(n+m)(Sn-Sm),
令m=1,则(n-1)Sn+1=(n+1)(Sn-a1).化为nan+1=Sn+1+Sn-(n+1)a1
n≥2时,(n-1)an=Sn+Sn-1-na1
∴nan+1-(n-1)an=an+1+an-a1
∴(n-1)an+1-nan=-a1
(n-2)an-(n-1)an-1=-a1
∴(n-1)(an+1+an-1)=2(n-1)an
∴an+1+an-1=2an
∴数列{an}是等差数列.
∵a2016=3000=a1+2015d,即3000-a1=2015d,
∵数列{an}的各项均为正整数,∴d=0或1.
若d=0,则an=a2016=2016.
若d=1,则a1=885,∴an=985+(n-1)=984+n.
故答案为:984+n或3000.

点评 本题考查了递推关系、等差数列的通项公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设100件产品中有70件一等品,25件二等品,规定一、二等品为合格品,从中任取1件,求:
(1)取得一等品的概率;
(2)已知取得的是合格品,求它是一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.2014年10月23日,三个男生与两个女生站成一排观看“日偏食”
(1)两个女生相邻,共有多少种不同的站法?
(2)两个女生不相邻,共有多少种不同的站法?
(3)现要调换3人位置,其余2人位置不变,这样不同的调换方法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足Sn+1=an+n2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=$\frac{1}{{a}_{n}{a}_{n+1}{a}_{n+2}}$,数列{bn}的前n项和为Tn,若m$<\frac{1}{{T}_{n}}$<m+50对任意正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在数列{an}中,a1=$\frac{1}{3}$,$\frac{1}{{a}_{n+1}}$=$\frac{3}{{a}_{n}({a}_{n}+3)}$,n∈N+,且bn=$\frac{1}{3+{a}_{n}}$,记Pn=b1•b2•b3…bn,Sn=b1+b2+b3+…+bn,则3n+1Pn+Sn=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知an=$\frac{2}{n(n+1)}$,则数列{an}的前100项和S100=(  )
A.$\frac{100}{101}$B.$\frac{200}{101}$C.$\frac{99}{100}$D.$\frac{198}{100}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.同时掷两个均匀的正方体骰子,则向上的点数之和为5的概率为(  )
A.$\frac{1}{9}$B.$\frac{1}{18}$C.$\frac{2}{21}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在公比为2的等比数列{an}中,a2与a5的等差中项是9$\sqrt{3}$.
(1)求a1的值;
(2)若函数y=a1sin($\frac{π}{4}x+$φ),0<φ<π的一部分图象如图所示,M(-1,a1),N(3,-a1)为图象上的两点,设∠MON=θ,其中O为坐标原点,0<θ<π,求cos(θ-φ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某地修建防洪渠道,其直截面图是等腰梯形ABCD(如图),底CD=40,腰AD=40,为使防洪渠道的通水量最大,应将防洪渠道的上口AB的宽设计为多少?

查看答案和解析>>

同步练习册答案