分析 由已知数列递推式可得${b}_{n}=\frac{{a}_{n}}{3{a}_{n+1}}$,$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+3}=\frac{1}{{a}_{n}}-{b}_{n}$,然后求出Pn与Sn,代入3n+1Pn+Sn得答案.
解答 解:∵$\frac{1}{{a}_{n+1}}$=$\frac{3}{{a}_{n}({a}_{n}+3)}$,bn=$\frac{1}{3+{a}_{n}}$,
∴${b}_{n}=\frac{{a}_{n}}{3{a}_{n+1}}$,$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+3}=\frac{1}{{a}_{n}}-{b}_{n}$,
∴Pn=b1•b2•b3…bn =$\frac{{a}_{1}}{3{a}_{2}}•\frac{{a}_{2}}{3{a}_{3}}…\frac{{a}_{n}}{3{a}_{n+1}}=\frac{1}{{3}^{n+1}•{a}_{n+1}}$,
Sn=b1+b2+b3+…+bn=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}+\frac{1}{{a}_{2}}-\frac{1}{{a}_{3}}+…+\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}=3-$$\frac{1}{{a}_{n+1}}$,
则3n+1Pn+Sn=$\frac{1}{{a}_{n+1}}+3-\frac{1}{{a}_{n+1}}=3$.
故答案为:3.
点评 本题考查数列求和,考查学生的逻辑思维能力和运算能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{16}$ | B. | $\frac{3}{16}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{3}$π | B. | 4$\sqrt{3}$π | C. | $\frac{32}{3}$π | D. | 16π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com