精英家教网 > 高中数学 > 题目详情
2.用数学归纳法证明:1+$\frac{n}{2}$≤1+$\frac{1}{2}+\frac{1}{3}+$…+$\frac{1}{{2}^{n}}$≤$\frac{1}{2}+n$(n是正整数)

分析 利用数学归纳法分两步证明即可,①当n=1时,易证不等式成立;②假设n=k(k≥1,k∈N*)时,不等式成立,即即1+$\frac{k}{2}$≤1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$≤$\frac{1}{2}$+k,通过放缩法,去证明当n=k+1时,不等式也成立即可.

解答 证明:①当n=1时,1+$\frac{1}{2}$≤1+$\frac{1}{2}$≤$\frac{1}{2}$+1,不等式成立;
②假设n=k(k≥1,k∈N*)时,不等式成立,即1+$\frac{k}{2}$≤1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$≤$\frac{1}{2}$+k,
则n=k+1时,
1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k}+{2}^{k}}$≥1+$\frac{k}{2}$+$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k}+{2}^{k}}$
>1+$\frac{k}{2}$+$\underset{\underbrace{\frac{1}{{2}^{k}+{2}^{k}}+\frac{1}{{2}^{k}+{2}^{k}}+…+\frac{1}{{2}^{k}+{2}^{k}}}}{{2}^{k}}$,
>1+$\frac{k}{2}$+${2}^{k}•\frac{1}{{2}^{k+1}}$,
=1+$\frac{k+1}{2}$
又1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+$\frac{1}{{2}^{k}+2}$+…+$\frac{1}{{2}^{k}+{2}^{k}}$<$\frac{1}{2}$+k+$\underset{\underbrace{\frac{1}{{2}^{k}}+\frac{1}{{2}^{k}}+…+\frac{1}{{2}^{k}}}}{{2}^{k}}$,
<$\frac{1}{2}$+k+${2}^{k}•\frac{1}{{2}^{k}}$=$\frac{1}{2}$+(k+1),
即n=k+1时也成立,
综合①②可知,对任意的n∈N*,1+$\frac{n}{2}$≤1+$\frac{1}{2}+\frac{1}{3}+$…+$\frac{1}{{2}^{n}}$≤$\frac{1}{2}+n$.

点评 本题考查数学归纳法,着重考查放缩法的应用,考查转化思想与推理论证的能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设数列{an}的前n项和为Sn,Sn=n2+2a|n-2016|(a>0,n∈N),则使得an≤an+1恒成立的a的最大值为$\frac{1}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设Sn是公差d≠0的等差数列{an}的前n项和,且S1,S2,S4成等比数列,则$\frac{{S}_{3}}{{a}_{3}}$=(  )
A.$\frac{9}{5}$B.3C.$\frac{9}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若椭圆的两个焦点为F1(-3,0)、F2(3,0),椭圆的弦AB过点F1,且△ABF2的周长等于20,该椭圆的标准方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一小型机械加工厂生产某种零件的年固定成本为15万元,每生产1千件需另投入1.6万元.设该加工厂一年内生产该种零件x千件并全部销售完,每千件的销售收入为P(x)万元,且P(x)=$\left\{\begin{array}{l}{11.6-\frac{1}{30}{x}^{2},0<x≤12}\\{\frac{106}{x}-\frac{250}{{x}^{2}},x>12}\end{array}\right.$
(1)写出年利润y(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该工厂在这种零件的生产中所获得的年利润最大.
(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,如果输入的m,n分别是(2x-y)5的展开式中y2x3,x2y3的系数,则输出的n=(  )
A.50B.35C.20D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知锐角三角形三边分别为3,4,a,则实数a的取值范围为($\sqrt{7}$,5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设△ABC的内角A、B、C所对边的长分别为a、b、c,若a是b与c的等差中项,$\frac{sinA}{sinB}$=$\frac{5}{3}$,则角C=(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2015年12月16日到18日第二届世界互联网大会在乌镇举行,17日奇虎360董事长周鸿祎在回答海外网记者的提问时,分享了过去100天中国每天遭受DDOS攻击的次数数据,并根据数据作出频率分布直方图,如图所示
(1)预计在未来3天中,有连续2天的数值高于180,另一天低于120的概率;
(2)设X表示未来3天中数值高于180的天数,求其分布列及数学期望.

查看答案和解析>>

同步练习册答案