精英家教网 > 高中数学 > 题目详情
4.已知数列{an}的前n项和为Sn,满足Sn=-n2+7n(n∈N*).
(Ⅰ)求数列{an}的通项公式;  
(Ⅱ)求Sn的最大值.

分析 (I)利用递推关系即可得出.
(II)配方利用二次函数的单调性即可得出.

解答 解:(Ⅰ)∵${S_n}=-{n^2}+7n$,
当n≥2时,${a_n}={S_n}-{S_{n-1}}=-{n^2}+7n-[-{(n-1)^2}+7(n-1)]=-2n+8$,
当n=1时,a1=S1=6适合上式.
∴an=-2n+8.
(Ⅱ)由(Ⅰ)${S_n}=-{n^2}+7n=-{(n-\frac{7}{2})^2}+\frac{49}{4}$,
∴n=3,4时,Sn的最大值为12.

点评 本题考查了数列递推关系、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.若直线AB的倾斜角α∈(0,$\frac{π}{3}$),则e的取值范围是[$\sqrt{3}$-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在一次研究性学习中,老师给出函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1).甲、乙、丙、丁四位同学在研究此函数时给出下列结论:
①当x>0时,f(x)=ex(1-x);
②f(x)=0有2个不相等实根;
③f(x)>0的解集为(-1,0)∪(1,+∞);
④函数f(x)在R为减函数,
其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某产品的广告费用x与销售额y的统计数据如表:根据表格数据可得回归方程 y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$ 中的$\stackrel{∧}{b}$为 9.4,据此模型预报广告费用为 6万元时销售额为(  )
广告费用x(万元)4235
销售额y(万元)49263954
A.63.6 万元B.65.5 万元C.67.7 万元D.72.0 万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求值:
(1)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$
(2)已知x+$\frac{1}{x}$=3,求x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.实系数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:
(1)(a-1)2+(b-2)2的值域.
(2)$\frac{a+b-3}{a-1}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=a-$\frac{2}{x}$
(1)若2f(1)=f(2),求a的值;
(2)判断f(x)在(-∞,0)上的单调性并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,已知sinA:sinB:sinC=3:5:7,则此三角形的最大内角为(  )
A.75°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a,b,c分别是△ABC的内角A,B,C的对边,向量$\overrightarrow{m}$=(tanA+tanB,-tanB),$\overrightarrow{n}$=(b,2c),且$\overrightarrow{m}⊥\overrightarrow{n}$
(1)求角A的大小;
(2)若$a=\sqrt{13}$,△ABC的面积为$3\sqrt{3}$,求b,c的值.

查看答案和解析>>

同步练习册答案