11£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÍÖÔ²¶ÌÖáµÄÒ»¸ö¶ËµãÓëÁ½¸ö½¹µã¹¹³ÉµÄÈý½ÇÐεÄÃæ»ýΪ2£¬Ö±Ïßl£ºy=kx+m£¨m¡Ù0£©ÓëÍÖÔ²½»Ó벻ͬµÄÁ½µãA£¬B
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì
£¨2£©ÈôÏß¶ÎABÖеãµÄºá×ø±êΪ$\frac{m}{2}$£¬ÇókµÄÖµ
£¨3£©ÈôÒÔÏÒABΪֱ¾¶µÄÔ²¾­¹ýÍÖÔ²µÄÓÒ¶¥µãM£¬ÔòÖ±ÏßlÊÇ·ñ¾­¹ý¶¨µã£¨³ýÓÒ¶¥µãÍ⣩£¿Èô¾­¹ý£¬Çó³ö¶¨µã×ø±ê£¬·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍÈý½ÇÐεÄÃæ»ý¹«Ê½¼°a£¬b£¬cµÄ¹ØÏµ£¬¼ÆËã¼´¿ÉµÃµ½a£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬¿ÉµÃxµÄ·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½k£»
£¨3£©ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÔ²µÄÐÔÖÊ£¬ÒÔ¼°´¹Ö±µÄÌõ¼þ£¬»¯¼òÕûÀí£¬½áºÏÖ±Ïߺã¹ý¶¨µãµÄÇ󷨣¬¼´¿ÉµÃµ½¶¨µã£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬e=$\frac{\sqrt{2}}{2}$£¬¼´$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬ÓÖbc=2£¬
a2-b2=c2£¬
½âµÃa=2£¬b=$\sqrt{2}$£¬
¼´ÓÐÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£»
£¨2£©½«y=kx+m´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬£¨1+2k2£©x2+4kmx+2m2-4=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòÓÐx1+x2=$\frac{-4km}{1+2{k}^{2}}$£¬
ÓÉÖеã×ø±ê¹«Ê½¿ÉµÃ$\frac{-2km}{1+2{k}^{2}}$=$\frac{m}{2}$£¬
½âµÃk=-1¡À$\frac{\sqrt{2}}{2}$£»
£¨3£©ÓÉ£¨2£©¿ÉµÃ¡÷=£¨4km£©2-4£¨1+2k2£©£¨2m2-4£©£¾0
ÕûÀíµÃ£º4k2-m2+2£¾0 ¢Ù
x1+x2=$\frac{-4km}{1+2{k}^{2}}$£¬x1x2=$\frac{2{m}^{2}-4}{1+2{k}^{2}}$£¬
ÓÉÒÑÖª£¬AM¡ÍMB£¬ÇÒÍÖÔ²µÄÓÒ¶¥µãΪM£¨2£¬0£©
¡à£¨x1-2£©£¨x2-2£©+y1y2=0
¼´£¨1+k2£©x1x2+£¨km-2£©£¨x1+x2£©+m2+4=0
Ò²¼´£¨1+k2£©•$\frac{2{m}^{2}-4}{1+2{k}^{2}}$+£¨km-2£©•$\frac{-4km}{1+2{k}^{2}}$+m2+4=0£¬
ÕûÀíµÃ£º3m2+8mk+4k2=0£¬
½âµÃ£ºm=-2k»òm=-$\frac{2}{3}$k£¬¾ùÂú×ã¢Ù
µ±m=-2kʱ£¬Ö±ÏßlµÄ·½³ÌΪy=kx-2k£¬¹ý¶¨µã£¨2£¬0£©£¬ÉáÈ¥£®
µ±m=-$\frac{2}{3}$kʱ£¬Ö±ÏßlµÄ·½³ÌΪy=k£¨x-$\frac{2}{3}$£©£¬¹ý¶¨µã£¨$\frac{2}{3}$£¬0£©£¬
¹ÊÖ±Ïßl¹ý¶¨µã£¬ÇÒ¶¨µãµÄ×ø±êΪ£¨$\frac{2}{3}$£¬0£©£®

µãÆÀ ±¾Ìâ×ۺϿ¼²éÍÖÔ²µÄÐÔÖʼ°Ó¦ÓúÍÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¾ßÓнϴóµÄÔËËãÁ¿£¬½âÌâʱҪעÒâΤ´ï¶¨ÀíµÄÁé»îÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒCÉÏÈÎÒâÒ»µãµ½Á½¸ö½¹µãµÄ¾àÀëÖ®ºÍ¶¼Îª4£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÓëÍÖÔ²½»ÓÚP¡¢Q£¬OÎª×ø±êÔ­µã£¬Èô¡ÏPOQ=90¡ã£¬ÇóÖ¤$\frac{1}{|PQ{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=3x-x3£¬Ôòº¯Êýy=f[f£¨x£©]-1µÄÁãµã¸öÊýΪ£¨¡¡¡¡£©
A£®3B£®5C£®7D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®½ñÌìÊÇÐÇÆÚÈý£¬ÎÊ245ÌìºóÊÇÐÇÆÚ¼¸£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=x2-alnx£¨a¡ÊR£©£¬g£¨x£©=x2+£¨a+2£©x+1
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä
£¨2£©Èôa£¾0£¬ÇÒ¶ÔÈÎÒâx1¡Ê[-1£¬2]£¬¶¼´æÔÚx2¡Ê£¨0£¬+¡Þ£©£¬Ê¹µÃg£¨x1£©=f£¨x2£©£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ä³Ñо¿ÐÔѧϰС×é¶Ôij»¨»ÜÖÖ×ӵķ¢Ñ¿ÂÊÓëÖçҹβîÖ®¼äµÄ¹ØÏµ½øÐÐÑо¿£®ËûÃÇ·Ö±ð¼Ç¼ÁË3ÔÂ1ÈÕÖÁ3ÔÂ5ÈÕµÄÖçҹβÿÌì30¿ÅÖÖ×ӵķ¢Ñ¿Êý£¬²¢µÃµ½ÈçÏÂ×ÊÁÏ£º
ÈÕÆÚ3ÔÂ1ÈÕ3ÔÂ2ÈÕ3ÔÂ3ÈÕ3ÔÂ4ÈÕ3ÔÂ5ÈÕ
βîx £¨¶È£©101113129
·¢Ñ¿Êýy£¨¿Å£©1516171413
²Î¿¼Êý¾Ý$\sum_{i=1}^5{{x_i}{y_i}=832£¬}\sum_{i=1}^5{x_i^2=615£¬}$£¬ÆäÖÐ$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}£»a=\overline y-b\overline x$
£¨1£©Çë¸ù¾Ý3ÔÂ1ÈÕÖÁ3ÔÂ5ÈÕµÄÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì£®¾ÝÆøÏóÔ¤±¨3ÔÂ6ÈÕµÄÖçҹβîΪ11¡æ£¬ÇëÔ¤²â3ÔÂ6ÈÕ½þÅݵÄ30¿ÅÖÖ×ӵķ¢Ñ¿Êý£®£¨½á¹û±£ÁôÕûÊý£©
£¨2£©´Ó3ÔÂ1ÈÕÖÁ3ÔÂ5ÈÕÖÐÈÎÑ¡Á½Ì죬¼ÇÖÖ×Ó·¢Ñ¿Êý³¬¹ý15¿ÅµÄÌìÊýΪX£¬ÇóXµÄ¸ÅÂÊ·Ö²¼ÁУ¬²¢ÇóÆäÊýѧÆÚÍûºÍ·½²î£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AB¡ÎCD£¬AB¡ÍAD£¬ÇÒAB=AD=$\frac{1}{2}$CD=1£¬ÏÖÒÔADΪһ±ßÏòÌÝÐÎÍâ×÷Õý·½ÐÎADEF£¬Ê¹Æ½ÃæADEFÓëÆ½ÃæABCD´¹Ö±£¬MΪEDµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºBC¡ÍÆ½ÃæBDE£»
£¨¢ò£©ÇóµãDµ½Æ½ÃæBECµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ä³¹«Ë¾¶ÔÔ±¹¤½øÐÐÉíÌåËØÖÊ×ۺϲâÊÔ£¬²âÊԳɼ¨·ÖΪÓÅÐã¡¢Á¼ºÃ¡¢ºÏ¸ñÈý¸öµÈ¼¶£¬²âÊÔ½á¹ûÈç±í£º£¨µ¥Î»£ºÈË£©
ÓÅÐãÁ¼ºÃºÏ¸ñ
ÄÐ1807020
Ů120a30
°´ÓÅÐã¡¢Á¼ºÃ¡¢ºÏ¸ñÈý¸öµÈ¼¶·Ö²ã£¬´ÓÖгéÈ¡50ÈË£¬ÆäÖгɼ¨ÎªÓŵÄÓÐ30ÈË£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©ÈôÓ÷ֲã³éÑùµÄ·½·¨£¬ÔںϸñµÄͬѧÖа´ÄÐÅ®³éȡһ¸öÈÝÁ¿Îª5µÄÑù±¾£¬´ÓÖÐÈÎÑ¡2ÈË£¬¼ÇXΪ³éȡŮÉúµÄÈËÊý£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªµãA¡¢B·Ö±ðΪ£¨-2£¬0£©¡¢£¨2£¬0£©£¬Ö±ÏßAP¡¢BPÏཻÓÚµãP£¬ÇÒËüÃǵÄбÂÊÖ®»ýÊÇ-$\frac{1}{4}$£¬¼Ç¶¯µãPµÄ¹ì¼£ÎªÇúÏßC£¬ÇóÇúÏßCµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸