| 日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
| 温差x (度) | 10 | 11 | 13 | 12 | 9 |
| 发芽数y(颗) | 15 | 16 | 17 | 14 | 13 |
分析 (1)由公式求出b,a,可得线性回归方程,从而预测3月6日浸泡的30颗种子的发芽数;
(2)由题意可知,X的可能取值为0,1,2,分别求出相应的概率,即可求其数学期望和方差.
解答 解:(1)由公式可得b=0.7,a=7.3
所以所求的线性回归方程为:$\widehaty=0.7x+7.3$…(6分)
当x=11时,y=15,即3月6日浸泡的30颗种子的发芽数约为15颗.
(2)X的可能取值为0,1,2,
P(X=0)=$\frac{{C}_{2}^{2}}{{C}_{5}^{2}}$=$\frac{1}{10}$,P(X=1)=$\frac{{C}_{3}^{1}{C}_{2}^{1}}{{C}_{5}^{2}}$=$\frac{3}{5}$,P(X=2)=$\frac{{C}_{3}^{2}}{{C}_{5}^{2}}$=$\frac{3}{10}$
其分布列为:
| X | 0 | 1 | 2 |
| p | $\frac{1}{10}$ | $\frac{3}{5}$ | $\frac{3}{10}$ |
点评 本题考查线性回归方程的计算、随机变量的分布列及数学期望与方差,考查了分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0•$\overrightarrow{a}$=0 | B. | λμ<0,$\overrightarrow{a}≠0$时,λ$\overrightarrow{a}$与μ$\overrightarrow{a}$方向一定相反 | ||
| C. | 若$\overrightarrow{b}$=λ$\overrightarrow{a}$($\overrightarrow{a}≠0$),则$\frac{\overrightarrow{b}}{\overrightarrow{a}}$=λ | D. | 若|$\overrightarrow{b}$|=|λ$\overrightarrow{a}$|($\overrightarrow{a}≠0$),则$\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|}$=λ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com