精英家教网 > 高中数学 > 题目详情
3.如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1,现以AD为一边向梯形外作正方形ADEF,使平面ADEF与平面ABCD垂直,M为ED的中点.
(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)求点D到平面BEC的距离.

分析 (Ⅰ)欲证BC⊥平面BDE,根据直线与平面垂直的判定定理可知只需证BC与平面BDE内两相交直线垂直,根据面面垂直的性质可知ED⊥平面ABCD,则ED⊥BC,根据勾股定理可知BC⊥BD,满足定理所需条件;
(Ⅱ)过点D作EB的垂线交EB于点G,则DG⊥平面BEC,从而点D到平面BEC的距离等于线段DG的长度,在直角三角形BDE中,利用等面积法即可求出DG,从而求出点D到平面BEC的距离.

解答 (Ⅰ)证明:在正方形ADEF中,ED⊥AD.
又因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,
所以ED⊥平面ABCD.
所以ED⊥BC.
在直角梯形ABCD中,AB=AD=1,CD=2,可得BC=$\sqrt{2}$.
在△BCD中,BD=BC=$\sqrt{2}$,CD=2,
所以BD2+BC2=CD2
所以BC⊥BD.
所以BC⊥平面BDE.
(Ⅱ)解:由(Ⅰ)知,BC⊥平面BDE
又因为BC?平面BCE,所以平面BDE⊥平面BEC.
过点D作EB的垂线交EB于点G,则DG⊥平面BEC
所以点D到平面BEC的距离等于线段DG的长度
在直角三角形BDE中,S△BDE=$\frac{1}{2}BD•DE$=$\frac{1}{2}BE•DG$
所以DG=$\frac{BD•DE}{BE}$=$\frac{\sqrt{6}}{3}$
所以点D到平面BEC的距离等于$\frac{\sqrt{6}}{3}$.

点评 本题主要考查了线面垂直的判定和点到面的距离的度量等有关知识,同时考查了空间想象能力、转化与划归的思想,属于综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.某人在x天观察天气,共测得下列数据:①上午或下午共下雨7次;②有5个下午晴;③有6个上午晴;④当下午下雨时上午晴.则观察的x天数为(  )
A.11B.9C.7D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求($\frac{x}{2}$+$\frac{1}{x}$+$\sqrt{2}$)5展开式的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b)的离心率为$\frac{\sqrt{2}}{2}$,椭圆短轴的一个端点与两个焦点构成的三角形的面积为2,直线l:y=kx+m(m≠0)与椭圆交与不同的两点A,B
(1)求椭圆C的方程
(2)若线段AB中点的横坐标为$\frac{m}{2}$,求k的值
(3)若以弦AB为直径的圆经过椭圆的右顶点M,则直线l是否经过定点(除右顶点外)?若经过,求出定点坐标,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)上的点(2,a)到焦点F的距离为3.
(Ⅰ)求抛物线的方程;
(Ⅱ)设动直线l与抛物线C相切于点A,且与其准线相交于点B,问在坐标平面内是否存在定点D,使得以AB为直径的圆恒过定点D?若存在,求出点D的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列结论中,正确的是(  )
A.0•$\overrightarrow{a}$=0B.λμ<0,$\overrightarrow{a}≠0$时,λ$\overrightarrow{a}$与μ$\overrightarrow{a}$方向一定相反
C.若$\overrightarrow{b}$=λ$\overrightarrow{a}$($\overrightarrow{a}≠0$),则$\frac{\overrightarrow{b}}{\overrightarrow{a}}$=λD.若|$\overrightarrow{b}$|=|λ$\overrightarrow{a}$|($\overrightarrow{a}≠0$),则$\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|}$=λ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.假定某篮球运动员每次投篮命中率均为P(0<P<1).现有3次投篮机会,并规定连续两次投篮均不中即终止投篮.已知该运动员不放弃任何一次投篮机会,且恰用完3次投篮机会的概率是$\frac{21}{25}$
(1)求P的值;
(2)设该运动员投篮命中次数为ξ,求ξ的概率分布及数学期望E(ξ)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知在平面直角坐标系xOy中,过点(1,0)的直线l与直线x-y+1=0垂直,且l与圆C:x2+y2=-2y+3交于A、B两点,则△OAB的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若变量x,y满足$\left\{{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}}$,则2x+y的最大值为8,$\frac{y+1}{x-2}$的取值范围$[-3,-\frac{1}{2}]$.

查看答案和解析>>

同步练习册答案