精英家教网 > 高中数学 > 题目详情
为了庆祝“五一劳动节”,某校教师进行趣味投篮比赛,比赛规则是:每场投5个球,至少投进3个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是
2
3

(1)记教师甲在每场的5次投球中投进球的个数为X,求X的分布列及数学期望;
(2)求教师甲在一场比赛中获奖的概率.
考点:离散型随机变量的期望与方差,互斥事件的概率加法公式,相互独立事件的概率乘法公式
专题:概率与统计
分析:(1)X的所有可能值为0,1,2,3,4,5,依条件知X~B(5,
2
3
),由此能求出X的分布列及数学期望.(2)设教师甲在一场比赛中获奖的事件为A,利用互斥事件概率加法公式求解.
解答: 解:(1)X的所有可能值为0,1,2,3,4,5,依条件知X~B(5,
2
3
),
P(X=k)=
C
k
5
(
2
3
)k(
1
3
)5-k
,k=0,1,2,3,4,5,…(3分)
∴X的分布列为:
X 0 1 2 3 4 5
P
1
243
10
243
40
243
80
243
80
243
32
243
EX=5×
2
3
=
10
3
.…(7分)
(2)设教师甲在一场比赛中获奖的事件为A.
则P(A)=
C
1
3
(
2
3
)3(
1
3
)2
+
C
2
3
(
2
3
)4(
1
3
)+(
2
3
)5
=
104
243
.…(12分)
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三角形ABC中,A=30°,AB=
3
,BC=1,则AC=(  )
A、1
B、
3
C、2
D、1或2

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,点E、F分别是PD、BC的中点.
(1)求证:EF∥平面PAB;
(2)求证:AD⊥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
.
a
=(sin(x+
π
6
),1),
b
=(4,4cosx-
3

(I)若
a
b
,求sin(x+
3
)的值;
(II)设f(x)=
a
b
,若α∈[0,
π
2
],f(α-
π
6
)=2
3
,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=64,an+1=
1
2
an(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=log2an,求数列{|bn|}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)在定义域[-1,1]上是奇函数,又是减函数.
(1)求证:对任意x1、x2∈[-1,1],有[f(x1)+f(x2)]•(x1+x2)≤0;
(2)若f(2-a2)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求数列
22
22-1
42
42-1
62
62-1
82
82-1
的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

某教育主管部门到一所中学检查学生的体质健康情况.从全体学生中,随机抽取12名进行体质健康测
试,测试成绩(百分制)以茎叶图形式表示如下:根据学生体质健康标准,成绩不低于76的为优良.
成绩
52
65
728
8666778
908
(Ⅰ)将频率视为概率.根据样本估计总体的思想,在该校学生中任选3人进行体质健康测试,求至多有1人成绩是“优良”的概率;
(Ⅱ)从抽取的12人中随机选取3人,记ξ表示成绩“优良”的学生人数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心在坐标原点,且与直线l1:x-y-2
2
=0相切
(Ⅰ)求直线l2:4x-3y+5=0被圆C所截得的弦AB的长.
(Ⅱ)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N,求直线MN的方程
(Ⅲ) 若与直线l1垂直的直线l与圆C交于不同的两点P,Q,若∠POQ为钝角,求直线l纵截距的取值范围.

查看答案和解析>>

同步练习册答案