精英家教网 > 高中数学 > 题目详情
9.若点A(1,-2),B(2,1)在矩阵M的变换下分别得到点A'(2,-6),B'(4,3).
(Ⅰ)求矩阵M;
(Ⅱ)若曲线C在M的作用下的新曲线为$\frac{x^2}{4}+\frac{y^2}{9}=1$,求曲线C的方程.

分析 (Ⅰ)先设出所求矩阵,利用待定系数法建立一个四元一次方程组,解方程组即可;
(Ⅱ)先设P(x,y)是曲线C上的任一点,P1(x′,y′)是P(x,y)在矩阵T对应变换作用下新曲线上的对应点,根据矩阵变换求出P与P1的关系,代入已知曲线求出所求曲线即可.

解答 解:(Ⅰ)设矩阵M=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,根据题意得$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x′}\\{y′}\end{array}]$,则$\left\{\begin{array}{l}{x′=ax+by}\\{y′=cx+dy}\end{array}\right.$,
则$\left\{\begin{array}{l}{a-2b=2}\\{c-2d=-6}\\{2a+b=4}\\{2c+d=3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=2}\\{b=0}\\{c=0}\\{d=3}\end{array}\right.$,
∴矩阵M=$[\begin{array}{l}{2}&{0}\\{0}&{3}\end{array}]$;
(Ⅱ)变换T所对应关系$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$,代入$\frac{x^2}{4}+\frac{y^2}{9}=1$,整理得:x2+y2=1.
∴曲线C的方程x2+y2=1.(10分)

点评 本题主要考查来了逆矩阵与投影变换,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.定义在R上的可导函数f(x),当x∈(1,+∞)时,(x-1)f′(x)-f(x)<0恒成立,若a=f(2),b=$\frac{1}{2}$f(3),c=($\sqrt{2}$+1)f($\sqrt{2}$),则a,b,c的大小关系是(  )
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知tanθ=4,则$\frac{sinθ+cosθ}{sinθ}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.变换T1是绕原点逆时针旋转90°的变换,对应的变换矩阵为M1;变换T2是将点P(x,y)变为P1(2x+y,y),对应的变换矩阵为M2,求点(-1,2)先在变换T1作用下,再在变换T2的作用下点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知四面体ABCD中,△ABC,△BCD都是边长为2的正三角形,当四面体ABCD的体积最大时,它的外接球的表面积为$\frac{20π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在棱长为a的正方体ABCD-A1B1C1D1内有一个内切球O,过正方体中两条互为异面直线的AA1,BC的中点P、Q作直线,该直线被球面截在球内的线段的长为(  )
A.$\frac{\sqrt{2}}{2}$aB.$\frac{1}{2}$aC.$\frac{1}{4}$aD.($\sqrt{2}$-1)a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设离散型随机变量X的概率分布列如下:
X1234
P$\frac{2}{7}$$\frac{1}{7}$$\frac{5}{14}$p
则p的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{3}{14}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若将函数y=sin2x的图象向右平移$\frac{π}{12}$个单位长度,则平移后的图象的对称轴方程为(  )
A.x=$\frac{kπ}{2}$$-\frac{7π}{12}$(k∈Z)B.x=$\frac{kπ}{2}$$+\frac{7π}{12}$(k∈Z)C.x=$\frac{kπ}{2}$$-\frac{π}{3}$(k∈Z)D.x=$\frac{kπ}{2}$$+\frac{π}{3}$(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|x-2|+|x-a|.
(Ⅰ)若a=-2,解不等式f(x)≥5;
(Ⅱ)如果当x∈R时,f(x)≥3-a,求a的取值范围.

查看答案和解析>>

同步练习册答案