精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|sinkx|+|coskx|(k∈N*)的最小正周期为
 
考点:三角函数的周期性及其求法
专题:三角函数的求值
分析:利用三角函数的诱导关系变换和f(x+T)=f(x)求解.
解答: 解:函数f(x)=|sinkx|+|coskx|=|-sinkx|+|cos(-kx)|=|sink(x+
π
2k
)+|cosk(x+
2
)|
f(x+
π
2k

所以函数的最小正周期为:
π
2k
(k∈Z)
故答案为:
π
2k
点评:本题考查的知识要点:三角函数的恒等变换,利用f(x+T)=f(x)求解.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某大学的四位学生参加了志愿者活动,他们从甲、乙、丙三个比赛项目中,任选一项进行志愿者服务,每个项目允许有多人服务,假设每位学生选择哪项是等可能的.
(1)求这四位学生中至少有一位选择甲项目的概率;
(2)用随机变量ξ表示四位学生选择丙项目的人数,求其分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在直三棱柱ABO-A1B1O1中,OO1=4,OA=4,OB=3,∠AOB=90°,点D是线段A1B1的中点,点P是侧棱BB1上一点,若O1P与平面AOB所成的角正切值为
3
8

(1)求证:OP⊥BD;
(2)求二面角D-OP-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不同的平面α、β和不同的直线m、n,有下列四个命题
①若m∥n,m⊥α,则n⊥α;
②若m⊥α,m⊥β,则α∥β;
③若m⊥α,m∥n,n?β,则α⊥β;
④若m∥α,α∩β=n,则m∥n,
其中正确命题的个数是(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x≥1
x+y≤4
ax+by+c≤0
,且目标函数z=2x+y的最大值为6,最小值为1(其中b≠0),则
c
b
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cos(
π
3
-
1
2
x)的单调递增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=cos(2x+
π
3
)图象的一个对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=-x(x-a)2(x∈R),其中a∈R.
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)当a≠0时,求函数f(x)的极大值和极小值;
(3)当a=3时,函数图象与直线y=m有三个交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,a1=1,an+1=(1+
1
n
)an+
n+1
2n

(Ⅰ)设bn=
an
n
,求数列{bn}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)设cn=(2n-an)2n,求证:
1
c1c2
+
1
c2c3
+…+
1
cncn+1
1
4

查看答案和解析>>

同步练习册答案