精英家教网 > 高中数学 > 题目详情
12.在平面直角坐标系xOy中.己知直线l的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{2π}{3}}\\{y=4+tsin\frac{2π}{3}}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)直线l与曲线C相交于A、B两点,求∠AOB的值.

分析 (1)直线l消去参数t,能求出直线l的普通方程,曲线C的极坐标方程是ρ2=16,由此能求出曲线C的直角坐标系方程.
(2)求出圆心C(0,0)到直线l:$\sqrt{3}x$+y-4=0的距离为2,由此能求出∠AOB的值.

解答 解:(1)∵直线l的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{2π}{3}}\\{y=4+tsin\frac{2π}{3}}\end{array}\right.$(t为参数),
∴直线l的普通方程为$\sqrt{3}x+y-4=0$.
∵曲线C的极坐标方程是ρ=4,∴ρ2=16,
∴曲线C的直角坐标系方程为x2+y2=16.
(2)⊙C的圆心C(0,0)到直线l:$\sqrt{3}x$+y-4=0的距离:
d=$\frac{4}{\sqrt{3+1}}$=2,
∴cos$\frac{1}{2}∠AOB=\frac{2}{4}=\frac{1}{2}$,
∵0$<\frac{1}{2}∠AOB<\frac{π}{2}$,∴$\frac{1}{2}∠AOB=\frac{π}{3}$,
∴$∠AOB=\frac{2π}{3}$.

点评 本题考查直线的普通方程和曲线的直角坐标系方程的求法,考查角的求法,是基础题,解题时要认真审题,注意极坐标和直角坐标互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知二次函数y=f(x),不等式f(x)≤0的解集为N={x|-1≤x≤3},且关于x的方程f(x)+4=0有两个相等的实数根.
(Ⅰ)若M={x|1-a<x<a+1,a∈R},且M⊆N,求实数a的取值范围;
(Ⅱ)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个圆锥筒的底面半径为3cm,其母线长为5cm,则这个圆锥筒的体积为12πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x|+$\frac{m}{x}$-1(x≠0)
(1)当m=1时,判断f(x)在(-∞,0)的单调性,并用定义证明;
(2)若对任意x∈(1,+∞),不等式 f(log2x)>0恒成立,求m的取值范围.
(3)讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线的顶点在原点,对称轴是x轴,直线y=2x-4截抛物线弦长|AB|=$3\sqrt{5}$,求抛物线标准方程及它的准线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{2}{x}$-log3x的零点所在的一个区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知sinα=$\frac{\sqrt{5}}{5}$,cosβ=$\frac{3\sqrt{10}}{10}$,α∈($\frac{π}{2}$,π),β∈(-$\frac{π}{2}$,0)
(Ⅰ)求cosα,tanβ;
(Ⅱ)求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则(  )
A.a>-4B.a≤-2C.-4<a<-2D.-4<a≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌800粒种子中抽取60粒进行检测,现将这800粒种子编号如下001,002,…,800,若从随机数表第8行第7列的数7开始向右读,则所抽取的第4粒种子的编号是507.(如表是随机数表第7行至第9行)

查看答案和解析>>

同步练习册答案