精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=cos(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)满足f(x+2φ)=f(2φ-x),且对任意a∈R,在区间(a,a+2π]上f(x)有且只有一个最大值,则f(x)的一个递减区间是(  )
A.[-$\frac{π}{3}$,$\frac{π}{3}$]B.[-$\frac{π}{3}$,$\frac{2π}{3}$]C.[$\frac{2π}{3}$,$\frac{4π}{3}$]D.[$\frac{2π}{3}$,$\frac{5π}{3}$]

分析 由条件求出ω、φ的值,可得函数的解析式,再利用余弦函数的单调性求得函数的减区间,从而得出结论.

解答 解:∵对任意a∈R,在区间(a,a+2π]上f(x)有且只有一个最大值,且函数的最小正周期为2π,
故有$\frac{2π}{ω}$=2π,∴ω=1.
∵f(x+2φ)=f(2φ-x),∴函数f(x)的图象关于直线x=2φ对称,∴1×2φ+φ=kπ,k∈z,
即φ=$\frac{kπ}{3}$,结合0<φ<$\frac{π}{2}$,可得φ=$\frac{π}{3}$,故f(x)=cos(x+$\frac{π}{3}$).
令2kπ≤x+$\frac{π}{3}$≤2kπ+π,求得2kπ-$\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,故函数的减区间为[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$],k∈z.
故f(x)的一个递减区间是[-$\frac{π}{3}$,$\frac{2π}{3}$],
故选:B.

点评 本题主要考查余弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,AB是圆柱的母线,O′是上底面的圆心,△BCD是下底面圆的内接三角形,且BD是下底面的直径,E是CD的中点.求证:
(1)O′E∥平面ABC;
(2)平面O′CD⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)=[f′(1)-1]ex-1+[f′(1)+e]x+f′(0).
(1)求f(x)及f(x)的单调区间;
(2)设A(a,f(a)),B(b,f(b)) (a<b)两点连线的斜率为k,问是否存在常数c,且c∈(a,b),当x∈(a,c)时有f′(x)>k,当x∈(c,b)时有f′(x)<k;若存在,求出c,并证明之,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}中,a1=1,anan+1=21-2n,求通项公式{an}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在正方体ABCD-A1B1C1D1中,M,N分别是A1B1,BB1的中点,求异面直线AM与BD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{3}{2}$).
(1)求椭圆C的方程;
(2)P是椭圆C上的一点,点A、A′分别为椭圆的左、右顶点,直线PA与y轴交于点M,直线PA′与y轴交于点N,求|OM|2+|ON|2(O为坐标原点)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}、{bn}都是项数相同的等比数列,判断下列数列是等比数列是①②③⑦⑧
①{an•bn};②{an2};③{an•an+1};④{k•an};⑤{an+bn};⑥{an+an+1};⑦{$\frac{1}{{a}_{n}}$};⑧{$\frac{{a}_{n}}{{b}_{n}}$};⑨{an+2};{an+2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.按下列要求把12个人分成3个小组,各有多少种分法
(1)各组人数分别为2,4,6人;
(2)平均分成3个小组;
(3)平均分成3个小组,进入3个不同的车间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个正三角形的两个顶点在抛物线y2=ax上,另一个顶点是坐标原点,如果这个三角形的面积为36$\sqrt{3}$,则a=$±2\sqrt{3}$.

查看答案和解析>>

同步练习册答案