精英家教网 > 高中数学 > 题目详情
9.函数f(x)=3x+1+$\frac{12}{x^2}$(x>0)的最小值为10.

分析 将3x拆成$\frac{3x}{2}$+$\frac{3x}{2}$,再由三元均值不等式,即可求得最小值,求出等号成立的条件.

解答 解:f(x)=3x+1+$\frac{12}{x^2}$=($\frac{3x}{2}$+$\frac{3x}{2}$+$\frac{12}{{x}^{2}}$)+1(x>0)
≥3$\root{3}{\frac{3x}{2}•\frac{3x}{2}•\frac{12}{{x}^{2}}}$+1=9+1=10,
当且仅当$\frac{3x}{2}$=$\frac{3x}{2}$=$\frac{12}{{x}^{2}}$,即x=2时,取得等号.
则f(x)的最小值为10.
故答案为:10.

点评 本题考查韩寒是的最小值,主要考查三元均值不等式的运用,注意拆项,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设二元一次不等式组$\left\{\begin{array}{l}x+2y-19≥0\\ \;x-y+8≥0\\ 2x+y-14≤0\end{array}\right.$所表示的平面区域为M,若函数y=ax(a>0,且a≠1)的图象经过区域M,则实数a的取值范围为[2,9].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,梯形ABCD中,AD∥BC,DC⊥BC,AD=2,BC=6,若以AB为直径的⊙O与CD相切于点E,则DE等于(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某射击手射击一次命中的概率是0.7,连续两次均射中的概率是0.4,已知某次射中,则随后一次射中的概率是(  )
A.$\frac{7}{10}$B.$\frac{6}{7}$C.$\frac{4}{7}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,既是奇函数,又在(-∞,+∞)上为增函数的是(  )
A.y=3xB.y=$\frac{1}{x}$C.y=x3D.y=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆γ:$\frac{x^2}{a^2}$+y2=1(常数a>1)的左顶点为R,点A(a,1),B(-a,1),O为坐标原点.
(Ⅰ)若P是椭圆γ上任意一点,$\overrightarrow{OP}$=$m\overrightarrow{OA}$+$n\overrightarrow{OB}$,求m2+n2的值;
(Ⅱ)设M(x1,y1),N(x2,y2)是椭圆γ上的两个动点,满足kOM•kON=kOA•kOB,试探究△OMN的面积是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合A={x|-x2+7x-10<0}与B={x||2x+1|<3},则下列选项中正确的是(  )
A.A⊆BB.A?BC.B?AD.A=B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.探究C${\;}_{n}^{0}$6n+C${\;}_{n}^{1}$61+C${\;}_{n}^{2}$62+…+C${\;}_{n}^{n-1}$6n-1除以8的余数是多少?(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在△ABC中,角A、B、C的对边分别为a、b、c,cosA=$\frac{\sqrt{5}}{5}$,cosB=$\frac{\sqrt{10}}{10}$.
(1)求角C;
(2)若c=2,求三角形ABC面积.

查看答案和解析>>

同步练习册答案