精英家教网 > 高中数学 > 题目详情
3.设数列{an}的前n项和Sn,且Sn+1=a1(Sn+1),若a1=2,则an=2n

分析 利用递推关系与等比数列的通项公式即可得出.

解答 解:由题意得Sn+1=a1(sn+1)…①,
n≥2时,Sn=a1(sn-1+1)…②
①-②得an+1=2an
∴n≥2时,数列{an}是等比数列,公比为2,首项为2.
∴an=2×2n-1=2n
当n=1时,a1=2,满足,
故an=2n
故答案为:2n

点评 本题考查了等比数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知单位向量$\overrightarrow{a}$和$\overrightarrow{b}$,若$\overrightarrow{a}$$•\overrightarrow{b}$=$\frac{1}{2}$,且|$\overrightarrow{c}$$-\overrightarrow{a}$|+$\overrightarrow{c}$$-2\overrightarrow{b}$|=$\sqrt{3}$,则|$\overrightarrow{c}$$+2\overrightarrow{a}$|的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果把二次函数f(x)=ax2+bx+c与其导函数f′(x)的图象画在同一个坐标系中.则下面四组图中一定错误的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=x+sin2x,给出以下四个命题:
①函数f(x)的图象关于坐标原点对称;
②?x>0,不等式f(x)<3x恒成立;
③?k∈R,使方程f(x)=k没有实数根;
④若数列{an}是公差为$\frac{π}{3}$的等差数列,且f(a1)+f(a2)+f(a3)=3π,则a2=π,
其中的正确命题有①②④.(将正确的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=(x一1)ex,g(x)=x2,则函数f(x)与函数g(x)的图象交点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设实数p在[0,5]上随机地取值,使方程x2+px+1=0有实根的概率为(  )
A.0.6B.0.5C.0.4D.0.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知O是坐标原点,点M(x,y),且实数x,y满足不等式组$\left\{\begin{array}{l}{x+y-2≥0}\\{y≤2}\\{x<2}\end{array}\right.$,则|$\overrightarrow{OM}$|的取值范围为[$\sqrt{2}$,2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在区间[0,π]上随机地取一个数x,则事件“sinx≤$\frac{1}{2}$”发生的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设D为△ABC所在平面内一点,$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$,若$\overrightarrow{BC}$=λ$\overrightarrow{DC}$(λ∈R),则λ=(  )
A.2B.3C.-2D.-3

查看答案和解析>>

同步练习册答案