【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程与曲线
的直角坐标方程;
(2)设
为曲线
上位于第一,二象限的两个动点,且
,射线
交曲线
分别于
,求
面积的最小值,并求此时四边形
的面积.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知点
为抛物线
的焦点,点
在抛物线
上,且
.
![]()
(Ⅰ)求抛物线
的方程;
(Ⅱ)已知点
,延长
交抛物线
于点
,证明:以点
为圆心且与直线
相切的圆,必与直线
相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某超市2018年12个月的收入与支出数据的折线图如图所示:
![]()
根据该折线图可知,下列说法错误的是( )
A. 该超市2018年的12个月中的7月份的收益最高
B. 该超市2018年的12个月中的4月份的收益最低
C. 该超市2018年1-6月份的总收益低于2018年7-12月份的总收益
D. 该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等腰梯形
中(如图1),
,
,
为线段
的中点,
、
为线段
上的点,
,现将四边形
沿
折起(如图2)
![]()
(1)求证:
平面
;
(2)在图2中,若
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的内角
所对的边分别为
,_________,且
.现从:①
,②
,③
这三个条件中任选一个,补充在以上问题中,并判断这样的
是否存在,若存在,求
的面积
_________;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,
、
分别是椭圆
长轴的左、右端点,
为椭圆上的动点.
(1)求
的最大值,并证明你的结论;
(2)设直线
的斜率为
,且
,求直线
的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若点
在曲线
上,点
在曲线
上,求
的最小值及此时点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方形
中,
,
分别为棱
和棱
的中点,则下列说法正确的是( )
A.
∥平面
B.平面
截正方体所得截面为等腰梯形
C.
平面
D.异面直线
与
所成的角为60°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com