分析 当△AOB面积取最大值时,OA⊥OB,圆心O(0,0)到直线直线l的距离为1,由此能求出直线l的斜率.
解答 解:当△AOB面积取最大值时,OA⊥OB,
∵圆x2+y2=2相交于A,B两点,O为坐标原点,
∴圆心O(0,0),半径r=$\sqrt{2}$,
∴OA=OB=$\sqrt{2}$,AB=$\sqrt{2+2}$=2,
∴圆心O(0,0)到直线直线l的距离为1,
当直线l的斜率不存在时,直线l的方程为x=2,不合题意;
当直线l的斜率存在时,直线l的方程为y=k(x-2),
圆心(0,0)到直线l的距离d=$\frac{|-2k|}{\sqrt{{k}^{2}+1}}$=1,
解得k=$±\frac{\sqrt{3}}{3}$.
故答案为:$±\frac{{\sqrt{3}}}{3}$.
点评 本题主要考查了直线与圆的位置关系及其三角形面积的计算,属于中档试题,着重考查了数形结合思想及转化与化归思想的应用,在与圆有关的问题解答中,特别注意借助图形转化为与圆心的关系,是解答的一种常见方法,本题的解答当△AOB面积取最大值时,OA⊥OB,此时圆心O到直线的距离为1是解答本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最大值$\sqrt{2}$ | B. | 最小值$\sqrt{2}$ | C. | 最大值2 | D. | 最小值2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overline{x}$+a,s | B. | a$\overline{x}$,s2 | C. | a2$\overline{x}$,s2+a | D. | $\overline{x}$+a2,s+a2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com