精英家教网 > 高中数学 > 题目详情
19.已知cosθ=-$\frac{3}{5}$,θ∈($\frac{π}{2}$,π),
求(1)sinθ的值
(2)cos($\frac{π}{3}$-θ )的值.

分析 (1)由已知角的范围,利用同角三角函数基本关系式即可求值;
(2)利用特殊角的三角函数值,两角差的余弦函数公式即可计算求值.

解答 解:(1)∵cosθ=-$\frac{3}{5}$,θ∈($\frac{π}{2}$,π),
∴sinθ=$\sqrt{1-co{s}^{2}θ}$=$\sqrt{1-(-\frac{3}{5})^{2}}$=$\frac{4}{5}$.
(2)cos($\frac{π}{3}$-θ )=cos$\frac{π}{3}$cosθ+sin$\frac{π}{3}$sinθ=$\frac{1}{2}×(-\frac{3}{5})$+$\frac{\sqrt{3}}{2}×\frac{4}{5}$=$\frac{4\sqrt{3}-3}{10}$.

点评 本题主要考查了同角三角函数基本关系式,特殊角的三角函数值,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.甲乙两人比赛射击,两人的平均环数相同,甲所得环数的方差为5,乙所得环数如下:5,6,9,10,5,那么这两个人中成绩较为稳定的是乙.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数求导运算正确的有(  )
①(3x)′=3xlog3e;
②(log2x)′=$\frac{1}{xln2}$;
③(ex)′=ex
④($\frac{1}{lnx}$)′=x;
⑤(x•ex)=ex(1+x)
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x|-5<x<3},集合B=N,则A∩B=(  )
A.{1,2}B.{0,1,2}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不论m为何实数,直线mx-y+3+m=0恒过定点(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.-$\int{\begin{array}{l}2\\ 1\end{array}}$xdx=(  )
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)的导函数f′(x)在R上恒大于0,则对任意x1,x2(x1≠x2)在R上$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$的符号是正(填“正”、“负”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设集合A={x|-1<x<3},B={x|x>m}.
(1)若m=-1,求集合A在B中的补集;
(2)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知[x]表示不超过x的最大整数,则不等式组$\left\{\begin{array}{l}{y≤k(x-\frac{1}{2})+\frac{1}{2},k∈R}\\{[x]^{2}+[y]^{2}≤1}\end{array}\right.$表示的平面区域面积为s,那么s=5.

查看答案和解析>>

同步练习册答案