精英家教网 > 高中数学 > 题目详情
1.已知集合A={0,1,2,3},B={y|y=2x,x∈A},则A?B=(  )
A.{0,1}B.{0,2}C.{1,2}D.{1,3}

分析 求出集合B,从而求出A、B的交集即可.

解答 解:A={0,1,2,3},B={y|y=2x,x∈A}={0,2,4,6},
则A?B={0,2},
故选:B.

点评 本题考查了集合的运算,考查集合交集的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.化简:$\frac{1}{2}cos2αcos2β-{sin^2}α{sin^2}β-{cos^2}α{cos^2}β$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=sinx-\sqrt{3}cosx$的图象可由函数$y=\sqrt{3}sinx+cosx$的图象至少向右平移$\frac{π}{2}$个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即$\frac{n}{2}$);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则旅行变换后的第9项为1(注:1可以多次出现),则n的所有不同值的个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短轴的一个顶点和两个焦点构成直角三角形,且三角形的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设F1,F2是椭圆C的左、右焦点,过F1,F2任作两条平行直线分别交椭圆于A,B和C,D不同四点,求四边形ABCD的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设等比数列{an}的前n项和为Sn,若$\frac{{S}_{6}}{{S}_{3}}$=7,则$\frac{{S}_{9}}{{S}_{6}}$=(  )
A.2B.$\frac{7}{3}$C.$\frac{13}{4}$D.$\frac{43}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.6人排成一排,若甲,乙,丙顺序一定,有多少种不同的排法(  )
A.6B.24C.120D.144

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=cosxsin(x+\frac{π}{3})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}$.
(1)求函数f(x)的单调增区间;
(2)设g(x)=2af(x)+b,若g(x)在[-$\frac{π}{4}$,$\frac{π}{4}}$]上的值域为[2,4],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{OP}=(2,1)$,$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}=(5,1)$,设M是直线OP上任意一点(为坐标原点),则$\overrightarrow{MA}•\overrightarrow{MB}$的最小值为-8.

查看答案和解析>>

同步练习册答案