精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,P、Q分别是棱CD、CC1的中点,则异面直线A1P与DQ所成的角的大小是(  )
A、45°B、60°
C、75°D、90°
考点:异面直线及其所成的角
专题:空间角
分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1P与DQ所成的角的大小.
解答: 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,
建立空间直角坐标系,
设棱长为2,则D(0,0,0),P(0,1,0),
Q(0,2,1),A1(2,0,2),
A1P
=(-2,1,-2)
DQ
=(0,2,1)

A1P
DQ
=0+2-2=0,
A1P
DQ

∴异面直线A1P与DQ所成的角的大小90°.
故选:D.
点评:本题考查异面直线所成角的大小的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且对任意n∈N*,有2Sn=3an-2,则a1=
 
;Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,且
3
是3x与33y的等比中项,则
1
x
+
1
3y
的最小值是(  )
A、2
B、2
2
C、4
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的左、右焦点分别为F1、F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的渐近线方程为(  )
A、y=±3x
B、y=±2x
C、y=±(
3
+1)x
D、y=±(
3
-1)x

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①直线垂直于一个平面内的无数条直线是这条直线与这个平面垂直的充要条件;
②过空间一定点有且只有一条直线与已知平面垂直;
③不在一个平面内的一条直线和平面内的一条直线平行是这条直线和这个平面平行的充分条件;
④一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角相等或互补.
其中真命题的为(  )
A、①③B、②④C、②③D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右两个焦点,若双曲线C上存在点P满足|PF1|:|PF2|=2:1且∠F1PF2=90°,则双曲线C的渐近线方程是(  )
A、x±2y=0
B、2x±y=0
C、5x±4y=0
D、4x±5y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

圆x2+y2-4x+2y+c=0与直线3x-4y=0相交于A,B两点,圆心为P,若∠APB=90°,则c的值为(  )
A、8
B、2
3
C、-3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

方程
x|x|
16
+
y|y|
9
=λ(λ<0)
的曲线即为函数y=f(x)的图象,对于函数y=f(x),下列命题中正确的是
 
.(请写出所有正确命题的序号)
①函数y=f(x)在R上是单调递减函数;
②函数y=f(x)的值域是R;
③函数y=f(x)的图象不经过第一象限;
④函数y=f(x)的图象关于直线y=x对称;
⑤函数F(x)=4f(x)+3至少存在一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an+1=
an
1+an
(n=1,2,3,…),
(1)计算a1,a2,a3,a4
(2)猜想an的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

同步练习册答案