精英家教网 > 高中数学 > 题目详情
若函数f(x)=asinx+bcosx,非零向量
m
=(a,b),则称
m
为f(x)的“相伴向量”,f(x)为
m
的“相伴函数”
(Ⅰ)已知函数f(x)=(sinωx+cosωx)2+2cos2ωx-2(ω≥0)的最小正周期为2π,求f(x)的“相伴向量”
m
的模;
(Ⅱ)向量
n
=(n,1)
的“相伴函数”为g(x),且
n
与(1)中
m
满足
n
m
=1+
3
.将g(x)图象上所有点横坐标伸长为原来2倍,再将图象向左平移
3
个单位长度,得到函数h(x),若h(2α+
π
3
)=
6
5
α∈(0,
π
2
)
,求sinα.
考点:平面向量数量积的运算,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质,平面向量及应用
分析:(Ⅰ)将f(x)利用基本关系式以及倍角公式化简,得到a,b;
(Ⅱ)由题意得到g(x)的解析式,根据变换,得到h(x),由三角函数值求sinα.
解答: 解:(Ⅰ)f(x)=(sinωx+cosωx)2+2cos2ωx-2=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx,
所以f(x)=
2
sin(2ωx+
π
4
)
,依题意
=2π
,∴ω=
1
2

m
=(1,1)

(Ⅱ)依题意因为向量
n
=(n,1)
的“相伴函数”为g(x),
n
m
=1+
3

所以g(x)=
3
sinx+cosx=2sin(x+
π
6
)

h(x)=2sin(
1
2
x+
π
2
)
h(2α+
π
3
)=
6
5
π
cos(α+
π
6
)
=
4
5

sinα=
4
3
-3
10
点评:本小题主要考查三角恒等变换、三角函数的性质、向量的坐标表示、向量的运算等基础知识,考查创新思维能力、推理论证能力、阅读理解能力及运算求解能力,考查化归与转化思想、函数与方程思想、特殊与一般思想及应用意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算定积分:
1
0
xarctanxdx.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商品在30天内,每件的销售价格P(元)与时间x天的函数关系是P=
x+20,0<x≤24且x∈N
-x+100,24<x<30且x∈N
,该商品的日销量Q(件)与时间x(天)的函数关系是Q=-x+40(0<x≤30,x∈N)
(1)求该商品日销量金额y与时间x的函数关系;
(2)求该商品日销售金额的最大值,并指出日销售金额最大的一天是30天中的哪一天?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第四象限角,且sin(π+α)=
1
5
,则sin(α-
3
2
π)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右顶点A,x轴上有一点Q(2a,0),若C上存在一点P,使
AP
PQ
=0,求此双曲线的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ=2,则
sinθ
sin3θ+cos3θ
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a3=-3,则a1a2a3a4a5的值是(  )
A、35
B、-35
C、36
D、-36

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线m,l,平面α,β,且m⊥α,l?β,给出下列命题:
①若α∥β,则m⊥l;
②若α⊥β,则m∥l;
③若m⊥l,则α∥β
④若m∥l,则α⊥β
其中正确的命题的序号是
 

(注:把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
a2-1
(ax-a-x)
,其中a>1.
(1)当x∈(-1,1)时,f(1-m)+f(1-m2)<0成立,求实数m的取值范围;
(2)当x∈(-∞,2]时,f(x)-4<0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案