精英家教网 > 高中数学 > 题目详情
13.把一枚硬币任意抛掷三次,事件A表示“至少一次出现反面”,事件B表示“恰有一次出现正面”,则P(B|A)值等于(  )
A.$\frac{21}{64}$B.$\frac{7}{64}$C.$\frac{1}{7}$D.$\frac{3}{7}$

分析 由题意,先计算P(AB),P(A),再利用条件概率公式,即可求得结论.

解答 解:由题意,P(AB)=$\frac{3}{{2}^{3}}$=$\frac{3}{8}$,P(A)=1-$\frac{1}{{2}^{3}}$=$\frac{7}{8}$,
∴P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{\frac{3}{8}}{\frac{7}{8}}$=$\frac{3}{7}$,
故选:D

点评 本题考查条件概率,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知a1=1,an+1>an,且(an+1-an2-2(an+1+an)+1=0,计算a2,a3,然后猜想an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=asinx+bcosx(x∈R)的最大值是3.则a2+b2的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有人收集了春节期间平均气温x与某取暖商品销售额y的有关数据如下表:
平均气温(℃)-2-3-5-6
销售额(万元)20232730
根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间回归直线方程$\widehat{y}$=bx+a的系数$\widehat{b}$=-2.4,则预测平均气温为-8℃时该商品销售额为34.6万元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若三角形内切圆半径为r,三边长为a,b,c,则三角形的面积S=$\frac{1}{2}$(a+b+c)r,利用类比思想:若四面体内切球半径为R,四个面的面积为S1,S2,S3,S4,则四面体的体积V=$\frac{1}{3}$R(S1+S2+S3+S4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在直角坐标系xOy中,点M的坐标是(1,-$\sqrt{3}$),若以原点O为极点,x轴的非负半轴为极轴建立极坐标系,则点M的极坐标可以为(  )
A.(2,$\frac{π}{3}$)B.(2,$\frac{2π}{3}$)C.(2,-$\frac{π}{3}$)D.(2,2kπ+$\frac{π}{3}$)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.等差数列{an}中,a5=3,a17=2a8
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_{n+1}}{a_n}}}(n∈{N^*})$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lnx-ax(a∈R).
(1)若函数f(x)在x=2处的切线方程为y=x-b,求a,b的值;
(2)若函数g(x)=f(x)+$\frac{1}{2}$x2有两个极值点,且h(x)=ax-ex在(1,+∞)有最大值,求a的取值范围;
(3)讨论方程f(x)=0解的个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如果不论实数b取何值,直线y=kx+b与双曲线x2-2y2=1总有公共点,那么k的取值范围为-$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案