精英家教网 > 高中数学 > 题目详情
4.如图,在五面体ABCDEF中,四边形ABCD为正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.
(Ⅰ)证明:AG⊥CD;
(Ⅱ)若点M在线段AC上,且$\frac{AM}{MC}=\frac{1}{3}$,求证:GM∥平面ABF;
(Ⅲ)已知空间中有一点O到A,B,C,D,G五点的距离相等,请指出点O的位置.(只需写出结论)

分析 (Ⅰ)根据等腰三角形AG⊥EF.推证 AG⊥AD,AG⊥平面ABCD,线面的转化 AG⊥CD.
(Ⅱ)根据中点推证GF∥MN,GF=MN.四边形GFNM是平行四边形. 由直线平面平行的判定定理推证GM∥平面ABF;
(Ⅲ)根据中点与平行的关系得出点O为线段GC的中点.

解答 (Ⅰ)证明:因为AE=AF,点G是EF的中点,
所以 AG⊥EF.
又因为 EF∥AD,
所以 AG⊥AD.
因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD,AG?平面ADEF,
所以 AG⊥平面ABCD.
因为 CD?平面ABCD,
所以 AG⊥CD.
(Ⅱ)证明:如图,过点M作MN∥BC,且交AB于点N,连结NF,
因为 $\frac{AM}{MC}=\frac{1}{3}$,所以$\frac{MN}{BC}=\frac{AM}{AC}=\frac{1}{4}$,
因为 BC=2EF,点G是EF的中点,
所以 BC=4GF,
又因为 EF∥AD,四边形ABCD为正方形,
所以 GF∥MN,GF=MN.
所以四边形GFNM是平行四边形.
所以 GM∥FN.
又因为GM?平面ABF,FN?平面ABF,
所以 GM∥平面ABF.
(Ⅲ)解:点O为线段GC的中点.

点评 本题考查了空间几何体的性质,空间直线的位置关系,直线平面的平行关系,掌握好定理,转化直线的为关系判断即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设复数z=1+i(i是虚数单位),则$\frac{2}{z}$=(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.利用计算机随机在[0,4]上先后取两个数分别记为x,y,在平面直角坐标系中,点P的坐标为(x-3,x-y),则P点在第一象限的概率是$\frac{7}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=-2x-1+$\frac{1}{{{2^{x+1}}}}$,g(x)=x3-3x,那么函数y=f(g(x))是(  )
A.奇函数,且在(0,1)上是增函数,在(1,+∞)上是减函数
B.奇函数,且在(0,1)上是减函数,在(1,+∞)上是增函数
C.偶函数,且在(0,1)上是增函数,在(1,+∞)上是减函数
D.偶函数,且在(0,1)上是减函数,在(1,+∞)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx(x∈[0,\frac{π}{2}])$的单调递增区间是[0,$\frac{π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,已知曲线C的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=sinα\end{array}\right.({α为参数})$.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$ρsin({θ-\frac{π}{3}})=2$.
(1)求直线l的直角坐标方程;
(2)点P为曲线C上的动点,求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x2-cosx,若当-π<x<π时,f(x1)<f(x2)恒成立,则下列结论一定成立的是(  )
A.x1>x2B.x1<x2C.x12<x22D.|x1|>|x2|

查看答案和解析>>

科目:高中数学 来源:2017届四川成都七中高三10月段测数学(理)试卷(解析版) 题型:解答题

已知椭圆的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.

(1)求椭圆的标准方程;

(2)已知点,和面内一点,过点任作直线与椭圆相交于两点,设直线的斜率分别为,若,试求满足的关系式.

查看答案和解析>>

科目:高中数学 来源:2017届江西省红色七校高三上学期联考一数学(文)试卷(解析版) 题型:解答题

已知函数.

⑴当,求函数在区间上的极值;

⑵当时,函数只有一个零点,求正数的值.

查看答案和解析>>

同步练习册答案