精英家教网 > 高中数学 > 题目详情
1.在给定映射f:(x,y)→(x+y,x-y)下,(3,1)的原象是(2,1).

分析 根据映射的定义建立方程关系进行求解即可.

解答 解:由$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,
即(3,1)的原象是(2,1),
故答案为:(2,1)

点评 本题主要考查映射的应用,根据映射的定义建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知an=$\left\{\begin{array}{l}{2n-1,n<2015}\\{(-\frac{1}{2})^{n-1},n≥2015}\end{array}\right.$,Sn是数列{an}的前n项和(  )
A.$\lim_{n→∞}{a_n}$和$\lim_{n→∞}{S_n}$都存在B.$\lim_{n→∞}{a_n}$和$\lim_{n→∞}{S_n}$都不存在
C.$\lim_{n→∞}{a_n}$存在,$\lim_{n→∞}{S_n}$不存在D.$\lim_{n→∞}{a_n}$不存在,$\lim_{n→∞}{S_n}$存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设甲,乙两个圆柱的底面面积分别为S1,S2,体积为V1,V2,若它们的侧面积相等且$\frac{S_1}{S_2}=\frac{9}{4}$,则$\frac{V_1}{V_2}$的值是(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污染,记甲、乙的平均成绩为$\overrightarrow{{x}_{甲}}$,$\overrightarrow{{x}_{乙}}$,则$\overrightarrow{{x}_{甲}}$>$\overrightarrow{{x}_{乙}}$的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数y=loga(x2-ax+$\frac{1}{2}$)有最小值,则a的取值范围是(  )
A.0<a<1B.0<a<$\sqrt{2}$,a≠1C.1<a<$\sqrt{2}$D.a≥$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x+x2;则当x≥0时,f(x)=-2x+x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}满的前n项和为Sn,且Sn+an=2,n∈N*
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{{{log}_2}{a_{n+1}}{{log}_2}{a_{n+2}}}}$,求数列{$\frac{1}{{n{b_n}}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}\end{array}\right.$(其中t为参数),圆C的极坐标方程为$ρ=2cos({θ+\frac{π}{4}})$,
(Ⅰ)将圆C的极坐标方程和直线l的参数方程转化为普通方程.
(Ⅱ)过直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知${a^{\frac{2}{3}}}=\frac{4}{9}$,其中a>0,则$lo{g_a}\frac{4}{9}$=$\frac{2}{3}$; $lo{g_a}\frac{2}{3}$=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案