精英家教网 > 高中数学 > 题目详情
已知单调递增的等比数列{an}满足a2+a4=20,a3=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an•log 
1
2
an,数列{bn}的前n项和为Sn,Sn+n•2n+1>50成立的正整数n的最小值.
考点:等比数列的性质,数列的求和
专题:综合题,等差数列与等比数列
分析:(Ⅰ)设等比数列{an}的首项为a1,公比为q,利用单调递增的等比数列{an}满足a2+a4=20,a3=8,建立方程,求出首项与公比,求数列{an}的通项公式;
(Ⅱ)确定数列的通项,利用错位相减求和,结合Sn+n•2n+1>50成立,即可求出正整数n的最小值.
解答: 解:(I)设等比数列{an}的首项为a1,公比为q,
依题意,有
a1q+a1q3=20
a1q2=8.
,解之得
a1=2
q=2
a1=32
q=
1
2

又数列{an}单调递增,∴
a1=2
q=2
,∴an=2n.…(6分)
(Ⅱ)依题意,bn=an•log 
1
2
an=-n•2n
∴-Sn=1•2+2•22+…+(n-1)•2n-1+n•2n,①,-2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1
由①-②得:Sn=2+22+23+24+…+2n-n•2n+1…(8分)
=2n+1-n•2n+1-2…(10分)
∵Sn+n•2n+1>50
∴(1-n)•2n+1-2+n•2n+1>50
∴2n+1>52
∴最小正整数n的值为5.
点评:本题主要考查了等比数列的求和公式及通项公式的应用,错位相减求和方法的应用,及指数不等式的求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若sinα+cosβ=
1
3
,cosα-sinβ=
1
2
,则tan
α+β
2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中底面ABCD是平行四边形,AB⊥AC,AC⊥PB,E为PD上一点,PE=
1
2
PD,求证:PB∥平面AEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率
1
2
,其左焦点到点P(2,1)的距离为
10
,过左焦点作直线OP的垂线l交椭圆C于A,B两点.
(1)求椭圆C的方程;
(2)求△ABP的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

好利来蛋糕店某种蛋糕每个成本为6元,每个售价为x(6<x<11)元,该蛋糕年销售量为m万个,若已知
585
8
-m
(x-
21
4
)2
成正比,且售价为10元时,年销售量为28万个.
(1)求该蛋糕年销售利润y关于售价x的函数关系式;
(2)求售价为多少时,该蛋糕的年利润最大,并求出最大年利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:tan(
x
2
+
π
4
)+tan(
x
2
-
π
4
)=2tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD是正方形,E,F分别是AB,PD的中点,且PA=AB=2.
(1)求证:PB∥平面AFC;
(2)求点E到平面FAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学参加科普知识竞赛,需回答4个问题,每一道题能否正确回答互相独立的,且回答正确的概率是
3
4
,若回答错误的题数为ξ,则E(ξ)=
 
,D(ξ)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥O-ABC,∠BOC=90°.OA⊥平面BOC,AB=
10
,BC=
13
,AC=
5
,则此三棱锥外接球的表面积为
 

查看答案和解析>>

同步练习册答案