精英家教网 > 高中数学 > 题目详情
已知x,y,z成等差数列,求证:x2(y+z),y2(x+z),z2(x+y)也成等差数列.
考点:等差关系的确定
专题:等差数列与等比数列
分析:由x,y,z成等差数列得到x+z=2y,然后证明y2(x+z)是x2(y+z),z2(x+y)的等差中项得答案.
解答: 证明:∵x,y,z成等差数列,
∴x+z=2y,
而x2(y+z)+z2(x+y)
=x2y+x2z+xz2+yz2
=y(x2+z2)+xz(x+z)
=y(x2+z2)+xz•2y
=y(x2+z2+2xz)
=y(x+z)2
=y•(2y)2
=2y22y
=2•y2(x+z).
∴x2(y+z),y2(x+z),z2(x+y)也成等差数列.
点评:本题考查了等差关系的确定,考查由等差中项的概念判断数列为等差数列,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
x≥0
y≥0
x+y≤2
,则z=4x+y的取值范围是(  )
A、[0,2]
B、[0,8]
C、[2,8]
D、[2,10]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数F(x)=x2-2lnx-ax(a≠0),其导函数F′(x),若函数F(x)的图象交x轴于C(x1,0),D(x2,0)两点且线段CD的中点N(x0,0),问x0是否为F′(x)=0的根,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若a=3,∠B=2∠A,cosA=
6
3
,则b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.
x-10245
f(x)121.521
下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④当1<a<2时,函数y=f(x)-a最多有4个零点.
其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=axsinx-
3
2
(a>0)在(
π
2
,π)内有两个零点,则a的可能值为(  )
A、1
B、
5
8
C、
3
π
D、
15
16

查看答案和解析>>

科目:高中数学 来源: 题型:

求正弦函数y=sinx在0到
π
6
之间及
π
3
π
2
之间的平均变化率,并比较它们的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

以极点为原点,以极轴为x轴正半轴建立平面直角坐标系,已知曲线C的极坐标方程为ρ=10,曲线C′的参数方程为
x=3+5cosα
y=-4+5sinα
(α为参数).
(I)判断两曲线的位置关系;
(Ⅱ)若直线l与曲线C和C′均相切,求直线l的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f(x),且满足f(x)=f′(1)ex-1-f(0)x+
1
3
x3,则f(x)=
 

查看答案和解析>>

同步练习册答案