【题目】设函数f(x)=xln(x﹣1)﹣a(x﹣2).
(Ⅰ)若a=2017,求曲线f(x)在x=2处的切线方程;
(Ⅱ)若当x≥2时,f(x)≥0,求a的取值范围.
【答案】解:(Ⅰ)a=2017时,f(x)=xln(x﹣1)﹣2017(x﹣2),
则f′(x)=ln(x﹣1)+ ﹣2017,故f′(2)=﹣2015,
又f(2)=0,
故切线方程是:y﹣0=﹣2015(x﹣2),
即2015x+y﹣4030=0;
(Ⅱ)由f(x)≥0得xln(x﹣1)﹣a(x﹣2)≥0,而x≥2,
故ln(x﹣1)﹣ ≥0,
设函数g(x)=ln(x﹣1)﹣ ,(x≥2),
于是问题转化为g(x)≥0对任意的x≥2恒成立,
注意到g(2)=0,故若g′(x)≥0,则g(x)递增,
从而g(x)≥g(2)=0,而g′(x)= ,
∴g′(x)≥0等价于x2﹣2a(x﹣1)≥0,
分离参数得a≤ = [(x﹣1)+ +2],
由均值不等式得 [(x﹣1)+ +2]≥2,
当且仅当x=2时取“=”成立,于是a≤2,
当a>2时,设h(x)=x2﹣2a(x﹣1),
∵h(2)=4﹣2a=2(2﹣a)>0,
又抛物线h(x)=x2﹣2a(x﹣1)开口向上,
故h(x)=x2﹣2a(x﹣1)有2个零点,
设两个零点为x1 , x2 , 则x1<2<x2 ,
于是x∈(2,x2)时,h(x)<0,故g′(x)<0,g(x)递减,
故g(x)<g(2)=0,与题设矛盾,不合题意,
综上,a的范围是(﹣∞,2].
【解析】(Ⅰ)求出函数的导数,计算f(2),f′(2),求出切线方程即可;(Ⅱ)设函数g(x)=ln(x﹣1)﹣ ,(x≥2),于是问题转化为g(x)≥0对任意的x≥2恒成立,根据函数的单调性求出a的范围即可.
科目:高中数学 来源: 题型:
【题目】已知圆与轴负半轴相交于点,与轴正半轴相交于点.
(1)若过点的直线被圆截得的弦长为,求直线的方程;
(2)若在以为圆心半径为的圆上存在点,使得 (为坐标原点),求的取值范围;
(3)设是圆上的两个动点,点关于原点的对称点为,点关于轴的对称点为,如果直线与轴分别交于和,问是否为定值?若是求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,梯形中,∥,,, ,将沿对角线折起.设折起后点的位置为,并且平面 平面.给出下面四个命题:
①;②三棱锥的体积为;③ 平面;
④平面平面.其中正确命题的序号是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(满分12分)学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:
损坏餐椅数 | 未损坏餐椅数 | 总 计 | |
学习雷锋精神前 | 50 | 150 | 200 |
学习雷锋精神后 | 30 | 170 | 200 |
总 计 | 80 | 320 | 400 |
(Ⅰ)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?
(Ⅱ)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?
参考公式:,
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一直一艘船由岛以海里/小时的速度往北偏东的岛形式,计划到达岛后停留分钟后继续以相同的速度驶往岛.岛在岛的北偏西的方向上,岛也也在岛的北偏西的方向上.上午时整,该船从岛出发.上午时分,该船到达处,此时测得岛在北偏西的方向上.如果一切正常,此船何时能到达岛?(精确到分钟)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是 .
(Ⅰ)求油罐被引爆的概率;
(Ⅱ)如果引爆或子弹打光则停止射击,设射击次数为ξ.求ξ的分布列及数学期望E(ξ).( 结果用分数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三()班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.
(1)求全班人数及分数在之间的频数,并估计该班的平均分数;
(2)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了了解一年内的用水情况,抽取了10天的用水量如下表所示:
天数 | 1 | 1 | 1 | 2 | 2 | 1 | 2 |
用水量/吨 | 22 | 38 | 40 | 41 | 44 | 50 | 95 |
(Ⅰ)在这10天中,该公司用水量的平均数是多少?每天用水量的中位数是多少?
(Ⅱ)你认为应该用平均数和中位数中的哪一个数来描述该公司每天的用水量?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com