精英家教网 > 高中数学 > 题目详情
9.若a>0,b>0,且ab+a+2b=30,试求ab的最大值及a+2b的最小值.

分析 由a>0,b>0,运用基本不等式可得ab+a+2b=30≥ab+2$\sqrt{2ab}$,令$\sqrt{ab}$=t(t>0),得到二次不等式,解得t的范围,即可得到ab的最大值和a+2b的最小值.

解答 解:由a>0,b>0,
则ab+a+2b=30≥ab+2$\sqrt{2ab}$,
令$\sqrt{ab}$=t(t>0),
则t2+2$\sqrt{2}$t-30≤0,
解得0<t≤3$\sqrt{2}$,
即有ab≤18,
则30-(a+2b)≤18,
a+2b≥12,
当且仅当a=2b=6时,
ab的最大值为18,a+2b的最小值为12.

点评 本题考查基本不等式的运用:求最值,同时考查二次不等式的解法,注意最值取得的条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2$\sqrt{3}$sinxcosx-cos2x+1.
(1)求f(x)的单调递增区间;
(2)角A,B,C为△ABC的三个内角,且f($\frac{A}{2}$+$\frac{π}{12}$)=$\frac{11}{5}$,f($\frac{B}{2}$+$\frac{π}{3}$)=$\frac{23}{13}$,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:
(1)AE=AB;
(2)如果BM平分∠ABC,求证:BM⊥CE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知y=f(x)是定义域为R的单调函数,且x1≠x2,λ≠-1,α=$\frac{{{x_1}+λ{x_2}}}{1+λ},β=\frac{{{x_2}+λ{x_1}}}{1+λ}$,若|f(x1)-f(x2)|<|f(α)-f(β)|,则(  )
A.λ<0B.λ=0C.0<λ<1D.λ>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=-$\frac{1}{3}$x3+2ax2-3a2x+5.
(1)当a=$\frac{3}{2}$时,求函数f(x)的单调区间和极值;
(2)当x∈[2a,2a+2]时,不等式|f′(x)|≤3a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是一个空间几何体的三视图,则该几何体的表面积是(  )
A.16+πB.C.24+πD.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在如图所示的直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为2的菱形,且∠BAD=60°,AA1=4.

(1)求直四棱柱ABCD-A1B1C1D1的体积;
(2)求异面直线AD1与BA1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(mx+1)(lnx-3).
(1)若m=1,求曲线y=f(x)在x=1的切线方程;
(2)设点A(x1,f(x1)),B(x2,f(x2))满足lnx1•lnx2=3ln(x1•x2)-8,(x1≠x2),判断是否存在点P(m,0),使得∠APB为直角?说明理由;
(3)若函数f(x)在(0,+∞)上是增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.阅读如图所示的程序框图,运行相应的程序,若输入x的值为-5,则输出y的值为(  )
A.0.5B.1C.2D.4

查看答案和解析>>

同步练习册答案