精英家教网 > 高中数学 > 题目详情
4.若f(x)=ax2+bx+c(a≠0)是偶函数,则g(x)=ax3+bx2+cx是奇函数.

分析 由f(x)=ax2+bx+c是偶函数,则有f(-x)=f(x),求得b=0.可得g(x)=ax3 +cx,故有g(-x)=-g(x),可得函数g(x)为奇函数.

解答 解:若f(x)=ax2+bx+c是偶函数,则有f(-x)=f(x),即 ax2+bx+c=ax2-bx+c,∴b=0.
故g(x)=ax3+bx2+cx=ax3 +cx,故有g(-x)=a(-x)3+c(-x)=-(ax3+cx)=-g(x),
故函数g(x)为奇函数,
故答案为:奇函数.

点评 本题主要考查偶函数的定义.函数的奇偶性的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.将一根长4m的木条锯成两段,分别作为钝角△ABC的两边AB和BC,且∠ABC=120°,则使2$\sqrt{3}$m≤AC≤$\sqrt{13}$m的概率是$\frac{\sqrt{13}-2\sqrt{3}}{4-2\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.现有四个不同的球,4个不同的大盒子,要把球全部放入盒内.(每个盒子都可以放多个球)
(1)共有几种放法?
(2)恰有1个盒不放球,共几种放法?
(3)恰有2个盒不放球,共几种放法?
(4)恰有1个盒内有2个球,共几种放法?
(5)有1个盒内部少于3个球,共几种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的值域为[$\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2|x(x-a+1)|+3x(a∈R),g(x)=x2-3x.
(1)判断f(x)的奇偶性,并加以证明;
(2)若h(x)=f(x)+g(x),不等式4≤h(x)≤16对任意的x∈[1,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.观察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…,若某数m3按上述规律展开后,发现等式右边含有“2015”这个数,则m=45.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将正奇数1,3,5,7,…按如表的方式进行排列,记aij表示第i行第j列的数,若aij=2015,则i+j的值为(  )
 第1列第2列第3列第4列第5列
第1行 1357
第2行1513119 
第3行 17192123
第4行31292725 
第5行 39373533
A.505B.506C.254D.253

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知x∈R+,则x+$\frac{4}{{x}^{2}}$的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=2x3+ax2+bx+1的图象在(-1,f(-1))处的切线方程为12x+y-2=0.
(1)求实数a、b的值;
(2)求函数f(x)的极值.

查看答案和解析>>

同步练习册答案