精英家教网 > 高中数学 > 题目详情
与双曲线
x2
3
-
y2
1
=1
共焦点且过点(2
3
3
)
的椭圆方程为______.
由题设知:焦点为(±2,0)2a=
(2
3
-2)
2
+(
3
)
2
+
(2
3
+2)
2
+(
3
)
2
=8
a=4,c=2,b=2
3

∴与双曲线
x2
3
-
y2
1
=1
共焦点且过点(2
3
3
)
的椭圆方程是
x2
16
+
y2
12
=1

故答案为:
x2
16
+
y2
12
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为,若直线与椭圆的一个交点的横坐标为b,则k的值为(  )。
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),过点A
-a,0
B
0,b
的直线倾斜角为
π
6
,原点到该直线的距离为
3
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求适合下列条件的曲线的标准方程:
(1)a=6,c=3,焦点在y轴上的椭圆
(2)过点M(
2
,1)
,且焦点为F1(-
2
,0)
的椭圆
(3)一条渐近线方程是3x+4y=0,一个焦点是(5,0)的双曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知p:方程
x2
m-1
+
y2
m+3
=1
表示椭圆,q:方程x2+y2-4x+2my+m+6=0表示圆,若p真q假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆以对称轴为坐标轴,且长轴是短轴的3倍,并且过点(3,0),求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若线段AB的中点坐标为(1,-1),则椭圆的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的对称轴为坐标轴,短轴的一个端点和两个焦点的连线构成一个正三角形,且焦点到椭圆上的点的最短距离为
3
,则椭圆的方程为(  )
A.
x2
12
+
y2
9
=1
B.
x2
9
+
y2
12
=1
x2
12
+
y2
3
=1
C.
x2
12
+
y2
3
=1
D.
x2
12
+
y2
9
=1
x2
9
+
y2
12
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l:y=kx+2(k为常数)过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若L≥
4
5
5
,则椭圆离心率e的取值范围是(  )
A.(0,
5
5
]
B.(0,
2
5
5
]
C.(0,
3
5
5
]
D.(0,
4
5
5
]

查看答案和解析>>

同步练习册答案