精英家教网 > 高中数学 > 题目详情
16.方程|x2-y|=1-|y|所表示的曲线是(  )
A.B.C.D.

分析 易知|y|≤1;从而排除A,B;再分类讨论以确定曲线的形状即可.

解答 解:∵1-|y|≥0,
∴|y|≤1;
故排除A,B;
①当-1≤y≤0时,
|x2-y|=1-|y|可化为x2-y=1+y,
故y=$\frac{{x}^{2}-1}{2}$;
②当0<y≤1,x2<y时,
y-x2=1-y,
故y=$\frac{{x}^{2}+1}{2}$,
故排除C,
故选D.

点评 本题考查分类讨论的思想应用及方程的化简运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设命题甲:关于x的不等式x2+2ax+4≤0有解,命题乙:设函数f(x)=loga(x+a-2)在区间(1,+∞)上恒为正值,那么甲是乙的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\left\{\begin{array}{l}{\sqrt{2-|x-2|},}&{x∈[0,4]}\\{\frac{1}{2}f(x-4),}&{x∈(4,+∞)}\end{array}\right.$,若x>0时,不等式f(x)≤$\frac{m}{x}$恒成立,则实数m的取值范围为(  )
A.[4$\sqrt{2}$,+∞)B.[3$\sqrt{2}$,+∞)C.[2$\sqrt{2}$,+∞)D.[$\frac{5}{2}$$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某班级举行一次“科普知识”竞赛活动,活动分为初赛和决赛两个阶段.现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:
   分 组(分数段)    频 数(人 数)        频            率
[60,70)         8
[70,80)              0.44
[80,90)        14              0.28
[90,100
     合    计        50               1
(Ⅰ)填写频率分布表中的空格;
(Ⅱ)决赛规则如下:参加决赛的每位同学从给定的5道小题中依次口答,答对3道题就终止答题并获一等奖;如果前3道题都答错就不再答第4、5题而被淘汰.某同学进入决赛,每道题答对的概率均为0.5.
①求该同学恰好答满5道题并获一等奖的概率;
②记该同学决赛中答题的个数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.庄子说:“一尺之锤,日取其半.万世不竭”.这句话描述的问题实质是一个等比数列,设等比数列{an}的首项a1=1,前n项和Sn,则Sn一定满足(  )
A.Sn>$\frac{3}{2}$B.Sn<$\frac{3}{2}$C.Sn>2D.Sn<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.假设某地区人口每年增加1%,求25年后的该地区人口是现在人口的多少倍.(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2+ax+b,a,b∈R.
(1)若a+b=3,当x∈[1,2]时,f(x)≥0恒成立,求实数a的取值范围;
(2)是否存在实数对(a,b),使得不等式|f(x)|>2在区间[1,5]上无解,若存在,试求出所有满足条件的实数对(a,b);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为(0,1),且离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)从x2+y2=16上一点P向椭圆C引两条切线,切点分别为A,B,当直线AB与x轴、y轴分别交于M、N两点时,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=ax2+bx+c(a>0),满足f(1-x)=f(1+x),则f(2013x)与f(2014x)的大小关系是f(2013x)≤f(2014x).

查看答案和解析>>

同步练习册答案