精英家教网 > 高中数学 > 题目详情
5.设直线l:3x+4y+a=0,圆C:(x-2)2+y2=2,若在直线l上存在一点M,使得过M的圆C的切线MP,MQ(P,Q为切点)满足∠PMQ=90°,则a的取值范围是(  )
A.[-18,6]B.[6-5$\sqrt{2}$,6+5$\sqrt{2}$]C.[-16,4]D.[-6-5$\sqrt{2}$,-6+5$\sqrt{2}$]

分析 由切线的对称性和圆的知识将问题转化为C(2,0)到直线l的距离小于或等于2,再由点到直线的距离公式得到关于a的不等式求解.

解答 解:圆C:(x-2)2+y2=2,圆心为:(2,0),半径为$\sqrt{2}$,
∵在直线l上存在一点M,使得过M的圆C的切线MP,MQ(P,Q为切点)满足∠PMQ=90°,
∴在直线l上存在一点M,使得M到C(2,0)的距离等于2,
∴只需C(2,0)到直线l的距离小于或等于2,
故$\frac{|3×2+4×0+a|}{\sqrt{{3}^{2}+{4}^{2}}}≤$2,解得-16≤a≤4,
故选:C.

点评 本题考查直线和圆的位置关系,由题意得到圆心到直线的距离小于或等于2是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设a,b,c为正数,且a2+b2+c2=1,求证:$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$-$\frac{2({a}^{3}+{b}^{3}+{c}^{3})}{abc}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆T:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,过左焦点F的直线与椭圆交于A,B两点,若线段AB的中点为M(-$\frac{2}{3}$,$\frac{1}{3}$)
(1)求椭圆的方程;
(2)过右焦点的直线l与圆x2+y2=2相交于C、D,与椭圆T相交于E、G,且|CD|=$\sqrt{5}$,求|EG|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.据统计,在某银行的一个营业窗口等候的人数及其相应的概率如表:
排队人数012345人及5人以上
概率0.050.140.350.30.10.06
设排队人数为 0,1,2,3,4,5及5以上分别对应事件A,B,C,D,E,F,试求:
(Ⅰ)至多有1人排队等候的概率;
(Ⅱ)至少有4人排队等候的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|2x-1|.
(1)若不等式f(x+$\frac{1}{2}$)≤2m+1(m>0)的解集为[-2,2],求实数m的值;
(2)对任意x,y∈R,求证:f(x)≤2y+$\frac{4}{{2}^{y}}$+|2x+3|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个口袋中装有大小和形状完全相同的2个红球和2个白球,从这个口袋中任取2个球,则取得的两个球中恰有一个红球的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某城市要建宜居的新城,准备引进优秀企业进行城市建设.这个城市的甲区、乙区分别对6个企业进行评估,综合得分情况如茎叶图所示.
(Ⅰ)根据茎叶图,分别求甲、乙两区引进企业得分的平均值;
(Ⅱ)规定85分以上(含85分)为优秀企业.若从甲、乙两个区准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.小王创建了一个由他和甲、乙、丙共4人组成的微信群,并向该群发红包,每次发红包的个数为1个(小王自己不抢),假设甲、乙、丙3人每次抢得红包的概率相同.
(Ⅰ)若小王发2次红包,求甲恰有1次抢得红包的概率;
(Ⅱ)若小王发3次红包,其中第1,2次,每次发5元的红包,第3次发10元的红包,记乙抢得所有红包的钱数之和为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,长轴长为4,过椭圆的左顶点A作直线l,分别交椭圆和圆x2+y2=a2于相异两点P,Q.
(1)若直线l的斜率为$\frac{1}{2}$,求$\frac{AP}{AQ}$的值;
(2)若$\overrightarrow{PQ}$=λ$\overrightarrow{AP}$,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案