精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{g(x),x<0}\\{a-lo{g}_{2}(x+2),x≥0}\end{array}\right.$是奇函数,则f(x)>-1的解集为(  )
A.(-2,0]∪(2,+∞)B.(-2,+∞)C.(-∞,-2)∪(0,2)D.(-∞,2)

分析 根据f(0)=0计算a,判断f(x)的(0,+∞)上的单调性和最值,根据奇函数的性质得出f(x)在(-∞,0)上的情况,综合得出答案.

解答 解:∵f(x)是奇函数,∴f(0)=0,
即a-log22=0,∴a=1.
∴当x≥0时,f(x)=1-log2(x+2),
∴f(x)在[0,+∞)上单调递减,
令f(x)=-1得1-log2(x+2)=-1,解得x=2.
∴当x≥0时,f(x)>-1的解集为[0,2).
∵当x≥0时,f(x)≤f(0)=0,f(x)是奇函数,
∴当x<0时,f(x)>0,
∴f(x)>-1的解集为(-∞,0)∪[0,2)=(-∞,2).
故选D.

点评 本题考查了奇函数的性质,函数单调性判断与最值计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.现要给一长、宽、高分别为3、2、1的长方体工艺品各面涂色,有红、橙、黄、蓝、绿五种颜色的涂料可供选择,要求相邻的面不能涂相同的颜色,且橙色跟黄色二选一,红色要涂两个面,则不同的涂色方案种数有(  )
A.48种B.72种C.96种D.108种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.A${\;}_{5}^{2}$-C${\;}_{5}^{3}$等于(  )
A.0B.-10C.10D.-40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的 部分图象如图所示,f($\frac{π}{2}$)=-$\frac{2}{3}$,则f($\frac{π}{3}$)等于(  )
A.-$\frac{2}{3}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合A={x|x2-4x+3<0},U={x|x-1>0},则∁UA=(  )
A.(3,+∞)B.[3,+∞)C.(1,3)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知边长为2的菱形ABCD中,∠BCD=60°,E为DC的中点,如图1所示,将△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如图2所示.
(Ⅰ)求证:△PAB为直角三角形;
(Ⅱ)求二面角A-PD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A,B,C的对边为a,b,c,已知c=5,B=$\frac{2π}{3}$,△ABC的面积为$\frac{15\sqrt{3}}{4}$,则cos2A=$\frac{71}{98}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在区间[0,2]上随机取两个数x,y,则xy∈[0,2]的概率是(  )
A.$\frac{1-ln2}{2}$B.$\frac{3-2ln2}{4}$C.$\frac{1+ln2}{2}$D.$\frac{1+2ln2}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知射线OP:y=$\frac{4}{3}$x(x≥0)和矩形ABCD,AB=16,AD=9,点A、B分别在射线OP和x轴非负半轴上,则线段OD长度的最大值为(  )
A.$\sqrt{337}$B.27C.$\sqrt{689}$D.29

查看答案和解析>>

同步练习册答案