| A. | $2\sqrt{2}$ | B. | $3\sqrt{2}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\frac{{3\sqrt{2}}}{4}$ |
分析 设过点F的直线l的方程为x=my+1代入y2=4x得y2-4my-4=0,利用韦达定理结合且$\overrightarrow{FP}$+2$\overrightarrow{FQ}$=$\overrightarrow 0$,求出m2=$\frac{1}{8}$,利用S=$\frac{1}{2}$|OF|•|y1-y2|,由此能求出△OPQ的面积.
解答 解:设P(x1,y1),Q(x2,y2),则S=$\frac{1}{2}$|OF|•|y1-y2|.
设过点F的直线l的方程为x=my+1代入y2=4x得y2-4my-4=0,∴y1+y2=4m①,y1y2=-4②,
∵$\overrightarrow{FP}$+2$\overrightarrow{FQ}$=$\overrightarrow 0$,
∴(x1-1,y1)+2(x2-1,y2)=(0,0),
∴y1+2y2=0③
联立①②③可得m2=$\frac{1}{8}$
∴|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{16×\frac{1}{8}+16}$=3$\sqrt{2}$,
∴S=$\frac{1}{2}$|OF|•|y1-y2|=$\frac{1}{2}$×3$\sqrt{2}$=$\frac{3\sqrt{2}}{2}$.
故选C.
点评 本题考查抛物线的性质和应用,考查向量知识的运用,考查三角形面积的计算,解题时确定m2=$\frac{1}{8}$,利用S=$\frac{1}{2}$|OF|•|y1-y2|是关键.
科目:高中数学 来源: 题型:选择题
| A. | n+10 | B. | n+8 | C. | 2n+10 | D. | 2n+8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2,3,4} | B. | {3,5} | C. | {5} | D. | {1,2,3,4,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $4\sqrt{2}$ | C. | $4\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y2=x | B. | y2=2x | C. | y2=4x | D. | y2=8x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com