精英家教网 > 高中数学 > 题目详情
19.已知曲线C:y2=4x的焦点为F,过点F的直线l与曲线C交于P,Q两点,且$\overrightarrow{FP}$+2$\overrightarrow{FQ}$=$\overrightarrow 0$,则△OPQ的面积等于(  )
A.$2\sqrt{2}$B.$3\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{3\sqrt{2}}}{4}$

分析 设过点F的直线l的方程为x=my+1代入y2=4x得y2-4my-4=0,利用韦达定理结合且$\overrightarrow{FP}$+2$\overrightarrow{FQ}$=$\overrightarrow 0$,求出m2=$\frac{1}{8}$,利用S=$\frac{1}{2}$|OF|•|y1-y2|,由此能求出△OPQ的面积.

解答 解:设P(x1,y1),Q(x2,y2),则S=$\frac{1}{2}$|OF|•|y1-y2|.
设过点F的直线l的方程为x=my+1代入y2=4x得y2-4my-4=0,∴y1+y2=4m①,y1y2=-4②,
∵$\overrightarrow{FP}$+2$\overrightarrow{FQ}$=$\overrightarrow 0$,
∴(x1-1,y1)+2(x2-1,y2)=(0,0),
∴y1+2y2=0③
联立①②③可得m2=$\frac{1}{8}$
∴|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{16×\frac{1}{8}+16}$=3$\sqrt{2}$,
∴S=$\frac{1}{2}$|OF|•|y1-y2|=$\frac{1}{2}$×3$\sqrt{2}$=$\frac{3\sqrt{2}}{2}$.
故选C.

点评 本题考查抛物线的性质和应用,考查向量知识的运用,考查三角形面积的计算,解题时确定m2=$\frac{1}{8}$,利用S=$\frac{1}{2}$|OF|•|y1-y2|是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.异面直线a,b成60°,直线c⊥a,则直线b与c所成的角的范围为[30°,90°].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果P1,P2,…,Pn是抛物线C:y2=8x上的点,它们的横坐标依次为x1,x2,…,xn,F是抛物线C的焦点,若x1+x2+…+xn=8,则|P1F|+|P2F|+…+|PnF|=(  )
A.n+10B.n+8C.2n+10D.2n+8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合U={1,2,3,4,5,6,7,8},A={1,2,3},B={3,5},则(∁UA)∩B=(  )
A.{1,2,3,4}B.{3,5}C.{5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a$,$\overrightarrow b$,|$\overrightarrow a$|=2,|$\overrightarrow b$|=4,且$\overrightarrow a$与$\overrightarrow b$的夹角为45°,则$\overrightarrow a$•$\overrightarrow b$=(  )
A.4B.$4\sqrt{2}$C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过抛物线y2=2px(p>0)的焦点F的直线l依次交抛物线及其准线于点A、B、C,若|AF|=2,$\overrightarrow{CB}$=2$\overrightarrow{BF}$,则抛物线的方程为(  )
A.y2=xB.y2=2xC.y2=4xD.y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知一个袋内有5只不同的红球,6只不同的白球.
(1)从中任取4只球,红球的只数不比白球少的取法有多少种?
(2)若取一只红球记2分,取一只白球记1分,从中任取5只球,使总分不小于7分的取法有多少种?
(3)在(2)条件下,当总分为8时,将抽出的球排成一排,仅有两个红球相邻的排法种数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合A={x|x-1>1},B={x|x<3},则A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sin(2x-$\frac{π}{6}$)的图象C1向左平移$\frac{π}{4}$个单位得图象C2,则C2对应的函数g(x)的解析式为y=sin(2x+$\frac{π}{3}$).

查看答案和解析>>

同步练习册答案