精英家教网 > 高中数学 > 题目详情
9.异面直线a,b成60°,直线c⊥a,则直线b与c所成的角的范围为[30°,90°].

分析 作b的平行线b′,交a于O点,所有与a垂直的直线平移到O点组成一个与直线a垂直的平面α,O点是直线a与平面α的交点,在直线b′上取一点P,作垂线PP'⊥平面α,交平面α于P',∠POP'是b′与面α的线面夹角,在平面α所有与OP'垂直的线,由此能求出直线b与c所成的角的范围.

解答 解:如图作b的平行线b′,交a于O点,
所有与a垂直的直线平移到O点组成一个与直线a垂直的平面α,O点是直线a与平面α的交点,
在直线b′上取一点P,作垂线PP'⊥平面α,交平面α于P',
∠POP'是b′与面α的线面夹角,∠POP'=30°.
在平面α中,所有与OP'平行的线与b′的夹角都是30°.
在平面α所有与OP'垂直的线
∵PP'⊥平面α,∴该线⊥PP′,
则该线⊥平面OPP',∴该线⊥b',与b'的夹角为90°,
与OP'夹角大于0°,小于90°的线,
与b'的夹角为锐角且大于30°.
∴直线b与c所成的角的范围[30°,90°].
故答案为:[30°,90°].

点评 本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p>0)上的点(6,y0)到其准线的距离为$\frac{15}{2}$.
(I)证明:抛物线C与直线x-y+8=0无公共点;
(Ⅱ)若A(a,0)(a≠0)过点A的直线l与抛物线交于M,N两点,探究:是否存在定值a,使得$\frac{1}{|AM|}$$+\frac{1}{|AN|}$的值不随直线l的变化而变化.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,点D是AB的中点.求证:
(1)AC1∥平面B1CD;
(2)AC⊥BC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集)
①若“a,b∈R,则a-b>0⇒a>b”类比推出“a,b∈C,则a-b>0⇒a>b”;
②“若a,b∈R,则a•b∈R”类比推出“若a,b∈C,则a•b∈C″;
③由向量$\overrightarrow a$的性质|$\overrightarrow a$|2=${\overrightarrow a^2}$,可以类比得到复数z的性质:|z|2=z2
④“若a,b,c,d∈R,则a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b$\sqrt{2}$=c+d$\sqrt{2}$⇒a=c,b=d”;
其中类比结论正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高三(1)班全体女生的人数;
(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)结合茎叶图和频率分布直方图,估计全班女生的数学平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线的方程为标准方程,焦点在x轴上,其上点P(-3,m)到焦点F1的距离为5,则抛物线方程为(  )
A.y2=8xB.y2=-8xC.y2=4xD.y2=-4x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线3x+4y=b与圆x2+y2-2x-2y-2=0相切,则b=(  )
A.3或17B.3或-17C.-3或-17D.-3或17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知y=Asin(ωx+φ)在同一周期内,x=$\frac{π}{9}$时有最大值$\frac{1}{2}$,x=$\frac{4π}{9}$时有最小值-$\frac{1}{2}$,则函数的解析式为(  )
A.y=2sin($\frac{x}{3}$-$\frac{π}{6}$)B.y=$\frac{1}{2}$sin(3x+$\frac{π}{6}$)C.y=2sin(3x-$\frac{π}{6}$)D.y=$\frac{1}{2}$sin(3x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知曲线C:y2=4x的焦点为F,过点F的直线l与曲线C交于P,Q两点,且$\overrightarrow{FP}$+2$\overrightarrow{FQ}$=$\overrightarrow 0$,则△OPQ的面积等于(  )
A.$2\sqrt{2}$B.$3\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{3\sqrt{2}}}{4}$

查看答案和解析>>

同步练习册答案