精英家教网 > 高中数学 > 题目详情
3.已知数列{an}满足a1=2和3an+1=an,n=1,2,…,
(1)证明:数列{an}为等比数列,并写出它的通项公式;
(2)记bn=an+n,n=1,2,…,求数列{bn}的前n项和Sn

分析 (1)利用等比数列的定义及其通项公式即可证明.
(2)利用等差数列与等比数列的通项公式及其前n项和公式即可得出.

解答 (1)证明:∵a1=2和3an+1=an,∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{3}$,
∴数列{an}为等比数列,首项为2,公比为$\frac{1}{3}$.
∴an=2×$(\frac{1}{3})^{n-1}$.
(2)解:bn=an+n=2×$(\frac{1}{3})^{n-1}$+n,
∴数列{bn}的前n项和Sn=$\frac{2×(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$+$\frac{n(n+1)}{2}$=3-$\frac{1}{{3}^{n-1}}$+$\frac{n(n+1)}{2}$.

点评 本题考查了等比数列与等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.
(1)求q的值和{an}的通项公式;
(2)设bn=$\frac{{{{log}_2}{a_{2n}}}}{{{a_{2n-1}}}}$,n∈N*,求数列{bn}的前n项和Sn,若不等式λ<Sn+$\frac{n}{{2}^{n-1}}$对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某企业生产甲、乙两种产品,其中2012年甲产品生产50万件,乙产品生产40万件,该厂今后十年内,甲产品生产数量每年平均比上叫年增长10%,乙产品生产数量每年比上一年增加6万件,从2012年起的十年内,甲产品生产件数构成数列{an},乙产品生产件数构成数列{bn}.
(1)分别写出数列{an},{bn}的通项公式;
(2)判断该厂2021年生产乙产品的数量是否超过甲产品生产数量.((1.1)9≈2.358)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.($\sqrt{x}$+$\frac{1}{x}$)10的展开式含x的整数幂的项数为(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知(1+2x)2n展开式的二项式系数之和是(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n展开式的二项式系数之和的64倍.
(1)求(1+2x)2n展开式的第3项;
(2)求(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n展开式含x的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设动点P,Q的坐标分别为(a,b),(c,d)且满足c=3a+2b+1,d=a+4b-3,如果点P在直线l上移动,点Q也在直线l上移动,这样的直线l是否存在?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.l1过点A(m,1),B(-3,4),l2过点C(0,2),D(1,1),且l1∥l2,则m=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|2x+1|+|2x-3|
(1)求不等式f(x)≤6的解集;
(2)若关于x的不等式f(x)≤|a-2|的解集非空,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知复数z=1+i,则$\frac{{|{z-1}|}}{\overline{z}-1}$的值等于(  )
A.iB.-iC.1D.-1

查看答案和解析>>

同步练习册答案