精英家教网 > 高中数学 > 题目详情
把函数f(x)=sin(2x-
π
3
)的图象向左平移φ(0<φ<π)个单位可以得到函数g(x)的图象,若g(x)的图象关于y轴对称,则φ的值为(  )
A、
6
B、
π
6
C、
6
π
6
D、
12
11π
12
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:根据函数y=Asin(ωx+φ)的图象变换规律,可得g(x)=sin(2x+2φ-
π
3
),再根据正弦函数、余弦函数的图象的对称性,可得2φ-
π
3
=kπ+
π
2
,k∈z,再结合结合0<φ<π,可得φ 的值.
解答: 解:函数f(x)=sin(2x-
π
3
)的图象向左平移φ(0<φ<π)个单位,
可以得到函数g(x)=sin[2(x+φ)-
π
3
]=sin(2x+2φ-
π
3
)的图象,
再根据若g(x)的图象关于y轴对称,可得g(x)为偶函数,故2φ-
π
3
=kπ+
π
2
,k∈z,
结合0<φ<π,可得φ=
12
,或φ=
11π
12

故选:D.
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,将正整数排成三角形数阵,每排的数称为一个群,从上到下顺次为第一群,第二群,…,第n群,…,第n群恰好n个数,则第n群中n个数的和是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

我校社团将举行一届象棋比赛,规则如下:两名选手比赛时,每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时结束.假设选手甲与选手乙比赛时,甲每局获胜的概率皆为
2
3
,且各局比赛胜负互不影响.设ξ表示比赛停止时已比赛的局数,则随机变量ξ的数学期望为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),如果存在区间[m,n](m<n),当定义域是[m,n]时,f(x)的值域也是[m,n],则称f(x)在[m,n]上是“和谐函数”,且[m,n]为该函数的“和谐区间”.现有以下命题:
①f(x)=(x-1)2在[0,1]是“和谐函数”;
②恰有两个不同的正数a使f(x)=(x-1)2在[0,a]是“和谐函数”;
③f(x)=
1
x
+k对任意的k∈R都存在“和谐区间”;
④由方程x|x|+y|y|=1确定的函数y=f(x)必存在“和谐区间”.
其中正确的命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若随机变量X服从正态分布X~N(1,σ2),且P(3<X)=0.4,则P(-1<X<1)=(  )
A、0.1B、0.2
C、0.3D、0.4

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的定点(-3,-1),则|PQ|的最小值与最大值之和为(  )
A、10B、8C、12D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明等式:1+2+3…+3n=
9n2+3n
2
,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(  )
A、3k+1
B、(3k+1)+(3k+2)
C、3k+3
D、(3k+1)+(3k+2)+(3k+3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x<3},N={x|2<x<4},则M∩N=(  )
A、∅
B、{x|0<x<3}
C、{x|1<x<3}
D、{x|2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A,B,C所对的边分别为a,b,c,若c2<a2+b2+2abcos2C,则∠C的可能取值为(  )
A、
6
B、
π
2
C、
π
3
D、
π
6

查看答案和解析>>

同步练习册答案