精英家教网 > 高中数学 > 题目详情
8.如图,李先生家住H小区,他工作在C处科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为$\frac{1}{2}$;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为$\frac{3}{4}$,$\frac{3}{5}$.
(1)若走L2路线,求遇到红灯次数X的分布列和数学期望;
(2)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.

分析 (1)走L2路线,遇到红灯次数X的取值为0,1,2.利用相互独立事件、互斥事件的概率计算公式即可得出概率、分布列及其数学期望.
(2)走L1路线,遇到红灯次数ξ~B$(3,\frac{1}{2})$,可得Eξ.比较Eξ与EX的大小关系即可得出结论.

解答 解:(1)走L2路线,遇到红灯次数X的取值为0,1,2.
P(X=0)=$(1-\frac{3}{4})×(1-\frac{3}{5})$=$\frac{1}{10}$,P(X=1)=$(1-\frac{3}{4})$×$\frac{3}{5}$+$\frac{3}{4}$×$(1-\frac{3}{5})$=$\frac{9}{20}$,P(X=2)=$\frac{3}{4}×\frac{3}{5}$=$\frac{9}{20}$.
∴X分布列为:

 X 0 1 2
 P $\frac{1}{10}$ $\frac{9}{20}$ $\frac{9}{20}$
数学期望EX=0×$\frac{1}{10}$+1×$\frac{9}{20}$+2×$\frac{9}{20}$=$\frac{27}{20}$.
(2)走L1路线,遇到红灯次数ξ~B$(3,\frac{1}{2})$,则Eξ=$3×\frac{1}{2}$=$\frac{3}{2}$.
∴Eξ>EX.
因此李先生从上述两条路线中选择L2的路线上班.

点评 本题考查了相互独立事件、互斥事件的概率计算公式、二项分布列的计算与数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图是我国2010年至2016年生活垃圾无害化处理量(单位:亿吨)的折线图.

(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量.
附注:参考数据:$\sum_{i=1}^7{y_i}$=9.32,$\sum_{i=1}^7{{t_i}{y_i}}$=40.17,$\sqrt{\sum_{i=1}^7{{{({y_i}-\bar y)}^2}}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:r=$\frac{{\sum_{i=1}^n{({t_i}-\bar t)({y_i}-\bar y)}}}{{\sqrt{\sum_{i=1}^n{{{({t_i}-\bar t)}^2}\sum_{i=1}^n{{{({y_i}-\bar y)}^2}}}}}}=\frac{{\sum_{i=1}^n{{t_i}{y_i}-n\overline t•\overline y}}}{{\sqrt{\sum_{i=1}^n{{{({t_i}-\bar t)}^2}\sum_{i=1}^n{{{({y_i}-\bar y)}^2}}}}}}$
回归方程$\widehat{y}$=$\widehat{a}$+$\widehat{b}$t中斜率和截距的最小二乘估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>0,且a≠1,函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{a})^{x}-1,x≤0}\\{{x}^{2}+(4a-1)x+3a-1,x>0}\end{array}\right.$在R上单调递增,且关于x的方程|f(x)|=x+1恰有两个不相等的实数根,则a的取值范围是(  )
A.[$\frac{1}{3}$,1)B.[$\frac{1}{3}$,$\frac{2}{3}$)C.(0,$\frac{2}{3}$)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数g(x)=(-x2+5x-3)ex(e为自然对数的底数),求函数y=g(x)在x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从1,2,3,4,5这五个数中一次随机取两个数,则取出的两个数的和为奇数的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则在齐王的马获胜的条件下,齐王的上等马获胜的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x2+x-2<0},N={x|x+1<0},则M∩N=(  )
A.(-1,1)B.(-2,-1)C.(-2,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=(  )
A.0.6826B.0.3413C.0.4603D.0.9207

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在数列{an}中,an=cos$\frac{π}{3×{2}^{n-2}}$(n∈N*
(1)试将an+1表示为an的函数关系式;
(2)若数列{bn}满足bn=1-$\frac{2}{n•n!}$(n∈N*),猜想an与bn的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案