分析 求函数的导数,根据导数的几何意义,讨论x∈[-1,3]时,曲线y=f(x)的切线斜率的最小值为-1,来确定b、c的值.
解答 解:已知f(x)=$\frac{1}{3}$x3+bx2+cx(b,c∈R),那么:f′(x)=x2+2bx+c=(x+b)2+c-b2,
对称轴为x=-b,
∵f′(1)=0,
∴f′(1)=1+2b+c=0,…①
(1)若-b≤-1,即b≥1,f′(x)在[-1,3]上是增函数,
所以f′(x)min=f′(-1)=-1,即1-2b+c=-1,…②
由①②解得b=$\frac{1}{4}$,不满足b≥1,故舍去.
(2)若-1<-b<3,即-3<b<1,f′(x)min=f′(-b)=-1,
即b2-2b2+c=-1,…③
由①③解得b=-2,c=3,或b=0,c=-1
(3)若-b≥3,即b≤-3,f′(x)在[-1,3]上是减函数,
所以f′(x)min=f′(3)=-1,
即9+6b+c=-1,…④
由①④解得b=-$\frac{9}{4}$,不满足b≤-3,故舍去.
综上可知,b=-2,c=3或b=0,c=-1.
点评 本题主要考查导数的计算,根据导数的几何意义求出切线斜率方程,在范围内讨论其最值是解决本题的关键.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 付款方式 | 分1期 | 分2期 | 分3期 | 分4期 |
| 频数 | 20 | a | 14 | b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)=2sin2x | B. | $g(x)=2sin(2x+\frac{2π}{3})$ | C. | g(x)=2cos2x | D. | $g(x)=2sin(2x+\frac{π}{6})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com