精英家教网 > 高中数学 > 题目详情
15.已知在直角坐标系中,O为坐标原点,$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(3,0),$\overrightarrow{OC}$=(x,1)
(Ⅰ)若A,B,C可构成以角B为锐角的三角形,求x的取值范围;
(Ⅱ)当x=3时,直线OC上是否存在点M,使$\overrightarrow{OA}$,$\overrightarrow{BM}$同方向?若存在,求点M的坐标,若不存在,说明理由;
(Ⅲ)若直线OC上存在点M,使$\overrightarrow{MA}$⊥$\overrightarrow{MB}$,求x的取值范围.

分析 (I)令$\overrightarrow{BA}•\overrightarrow{BC}>0$,取出$\overrightarrow{BA},\overrightarrow{BC}$同向的特殊情况即可;
(II)求出直线OC方程,假设存在M符合条件,列出方程解出;
(III)假设存在符合条件的M,根据向量垂直得出方程,则方程有解,列出不等式解出即可.

解答 解:(I)$\overrightarrow{BA}$=$\overrightarrow{OA}-\overrightarrow{OB}$=(-2,2),$\overrightarrow{BC}$=$\overrightarrow{OC}-\overrightarrow{OB}$=(x-3,1).
∴$\overrightarrow{BA}•\overrightarrow{BC}$=2(3-x)+2=8-2x,
∵B为锐角,∴$\overrightarrow{BA}•\overrightarrow{BC}>0$,即8-2x>0,解得x<4.
当$\overrightarrow{BA},\overrightarrow{BC}$同向时,-2-2(x-3)=0,解得x=2.
∴x<4且x≠2.
(II)x=3时,直线OC的方程为y=$\frac{1}{3}x$,设在直线OC上存在M(x,$\frac{1}{3}x$)使得$\overrightarrow{OA}$,$\overrightarrow{BM}$同方向,
∵$\overrightarrow{BM}$=$\overrightarrow{OM}-\overrightarrow{OB}$=(x-3,$\frac{1}{3}x$).∴$\frac{1}{x-3}=\frac{2}{\frac{1}{3}x}$>0,解得x=$\frac{18}{5}$.
∴M($\frac{18}{5}$,$\frac{6}{5}$).
(III)设直线OC上一点M(a,b),则bx-a=0.即a=bx.
∴$\overrightarrow{MA}$=(1-bx,2-b),$\overrightarrow{MB}$=(3-bx,-b),
∵$\overrightarrow{MA}⊥\overrightarrow{MB}$,∴$\overrightarrow{MA}•\overrightarrow{MB}$=0,即(1-bx)(3-bx)-b(2-b)=0,
化简得:(1+x2)b2-(4x+2)b+3=0.
∴△=(4x+2)2-12(1+x2)≥0,即x2+4x-2≥0.解得x$<-2-\sqrt{6}$或x>-2+$\sqrt{6}$.

点评 本题考查了平面向量的数量积运算,向量垂直,平行与数量积的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在等差数列{an}中,若a4+a6+a8=6,则a7-$\frac{1}{2}$a8=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知cos($\frac{π}{4}$-α)=$\frac{12}{13}$,α∈(0,$\frac{π}{4}$),则$\frac{cos2α}{{sin(\frac{π}{4}+α)}}$=(  )
A.$\frac{10}{13}$B.-$\frac{5}{13}$C.$\frac{5}{13}$D.$\frac{12}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在△ABC中,已知点D在BC边上,$\overrightarrow{AD}$•$\overrightarrow{AC}$=0,sin∠BAD=$\frac{1}{3}$,sin∠ABD=$\frac{\sqrt{3}}{3}$,BD=1.
(Ⅰ)求AD的长;
(Ⅱ)求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“mn<0”是“曲线$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1是焦点在x轴上的双曲线”的(  )
A.充分而不必要条件B.充分必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
(1)$\frac{1}{1×3}$+$\frac{1}{2×4}$+$\frac{1}{3×5}$+…+$\frac{1}{9×11}$;
(2)$\frac{1}{1×2×3}$+$\frac{1}{2×3×4}$+…+$\frac{1}{98×99×100}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.“一江春水向东流,江中浮玉千古幽”,中流砥柱焦山四面环江(如图所示).若江水以12.5km/h的速度自西向东流,游客需在长江南岸的A码头乘船出发,0.1h后到达焦山岛的入口B码头,设$\overrightarrow{AN}$为正北方向,$\overrightarrow{AE}$为正东方向,B码头在A码头北偏西30°方向上,并与A码头相距0.75km.
(1)求船的静水速度;
(2)求航行过程中船头方向与正北方向的夹角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若角α=$\frac{π}{3}$,则角α的终边与单位圆的交点P的坐标为(  )
A.($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)B.($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)C.(1,$\frac{\sqrt{3}}{2}$)D.(1,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC的面积S=a2-(b2+c2),则cosA等于(  )
A.-4B.$\frac{\sqrt{17}}{17}$C.±$\frac{\sqrt{17}}{17}$D.-$\frac{\sqrt{17}}{17}$

查看答案和解析>>

同步练习册答案