| A. | (-∞,-2]∪[2,+∞) | B. | [0,2] | C. | $[-\sqrt{2},\sqrt{2}]$ | D. | [-2,2] |
分析 渐近线方程y=±2x,当过焦点的两条直线与两条渐近线平行时,这两条直线与双曲线右支分别只有一个交点,由此能求出此直线的斜率的取值范围.
解答 解:双曲线${x^2}-\frac{y^2}{4}=1$的渐近线方程y=±2x,
当过焦点的两条直线与两条渐近线平行时,
这两条直线与双曲线右支分别只有一个交点
(因为双曲线正在与渐近线无限接近中),
那么在斜率是[-2,2]两条直线之间的所有直线中,
都与双曲线右支只有一个交点.
此直线的斜率的取值范围[-2,2].
故选:D.
点评 本题主要考查直线与双曲线的综合应用能力,具体涉及到直线与双曲线的渐近线相关知识,解题时要注意合理地进行等价转化.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{5}{12}$] | B. | (0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$) | C. | (0,$\frac{5}{6}$] | D. | (0,$\frac{5}{12}$]∪[$\frac{5}{6}$,$\frac{11}{12}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin2x | B. | y=cosx | C. | y=sin(2x+$\frac{2π}{3}$) | D. | y=sin(2x-$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 平均数 | 方差 | 命中9环及9环以上的次数 | |
| 甲 | |||
| 乙 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com