分析 由题意可得c=1,a2+b2=1,(0<a<1),右准线方程为x=a2,A(a,0),F(1,0),求得直线PF的方程,求出P的坐标,由题意可得|AF|=|AP|,解方程即可得到a的值,由离心率公式可得所求.
解答
解:由题意可得c=1,a2+b2=1,(0<a<1),
右准线方程为x=a2,A(a,0),F(1,0),
直线PF:y=tan$\frac{π}{6}$(x-1),即y=$\frac{\sqrt{3}}{3}$(x-1),
代入x=a2,可得P(a2,$\frac{\sqrt{3}}{3}$(a2-1)),
由题意可得|AF|=|AP|,
即为1-a=$\sqrt{(a-{a}^{2})^{2}+\frac{1}{3}({a}^{2}-1)^{2}}$,
解得a=$\frac{1}{2}$,
则e=$\frac{c}{a}$=2.
故答案为:2.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的性质和直线方程的知识,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}+1}{2}$ | C. | $\sqrt{3}+1$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com