精英家教网 > 高中数学 > 题目详情
15.设数列{an}的前 n 项和为 Sn,已知a1=1,Sn+1=3Sn+1,n∈N?
(1)求数列{an}的通项公式;
(2)若 bn=$\frac{8n}{{{a_{n+1}}-{a_n}}}$,求数列{bn}的前n项和Tn

分析 (1)当n≥2时,Sn=3Sn-1+2,an+1=Sn+1-Sn=3an,则a2=4,数列{an}是从第二项起以4为首项,3为公比的等比数列,即可求得数列{an}的通项公式;
(2)由(1)可知,当n≥2时,bn=$\frac{8n}{{{a_{n+1}}-{a_n}}}$=$\frac{8n}{4×{3}^{n-1}-4×{3}^{n-2}}$=$\frac{n}{{3}^{n-2}}$,利用“错位相减法”即可求得数列{bn}的前n项和Tn

解答 解:(1)由Sn+1=3Sn+2,
当n≥2时,Sn=3Sn-1+2,
则an+1=Sn+1-Sn=(3Sn+2)-(3Sn-1+2)=3an
a2=4,
∴数列{an}是从第二项起以4为首项,3为公比的等比数列,
∴an=$\left\{\begin{array}{l}{1}&{n=1}\\{4•{3}^{n-2}}&{n≥2}\end{array}\right.$,
∴数列{an}的通项公式an=$\left\{\begin{array}{l}{1}&{n=1}\\{4•{3}^{n-2}}&{n≥2}\end{array}\right.$;
(2)当n≥2时,bn=$\frac{8n}{{{a_{n+1}}-{a_n}}}$=$\frac{8n}{4×{3}^{n-1}-4×{3}^{n-2}}$=$\frac{n}{{3}^{n-2}}$,
当n=1时,b1=$\frac{8}{{a}_{2}-{a}_{1}}$=$\frac{8}{3}$,
T1=b1=$\frac{8}{3}$,
当n≥2时,Tn=$\frac{8}{3}$+$\frac{2}{{3}^{0}}$+$\frac{3}{{3}^{1}}$+…+$\frac{n-1}{{3}^{n-3}}$+$\frac{n}{{3}^{n-2}}$,
$\frac{1}{3}$Tn=$\frac{8}{9}$+$\frac{2}{{3}^{1}}$+$\frac{3}{{3}^{2}}$+…+$\frac{n-1}{{3}^{n-2}}$+$\frac{n}{{3}^{n-1}}$,
$\frac{2}{3}$Tn=$\frac{25}{9}$+$\frac{1}{{3}^{0}}$+$\frac{1}{3}$+…+$\frac{1}{{3}^{n-2}}$-$\frac{n}{{3}^{n-1}}$,
=$\frac{25}{9}$+$\frac{1-(\frac{1}{3})^{n-1}}{1-\frac{1}{3}}$-$\frac{n}{{3}^{n-1}}$,
=$\frac{77}{18}$-$\frac{2n+3}{2×{3}^{n-2}}$,
Tn=$\frac{77}{12}$-$\frac{2n+3}{4×{3}^{n-2}}$(n≥2),
由T1=b1=$\frac{8}{3}$,也适合上式,
∴数列{bn}的前n项和Tn,Tn=$\frac{77}{12}$-$\frac{2n+3}{4×{3}^{n-2}}$.

点评 本题考查数列的通项公式求法,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.实数x、y满足约束条件$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y-2≤0\end{array}\right.则z=\frac{y}{x+1}$的取值范围为[$\frac{1}{4},1$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某厂在生产甲产品的过程中,产量x(吨)与生产能耗y(吨)的对应数据如表:
 x 30 40 50 60
 y 25 35 40 45
根据最小二乘法求得回归方程为$\stackrel{∧}{y}$=0.65x+a,当产量为80吨时,预计需要生成能耗为59吨.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集 I={x|x2<9,x∈Z},A={1,2},B={-2,-1,2},则 A∪(∁I B)=(  )
A.{1}B.{1,2}C.{2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知 a>0,b>0,双曲线 C1:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1,圆C2:x 2+y 2-2ax+$\frac{3}{4}$a2=0,若双曲线C1的渐近线与圆C2相切,则双曲线 C1 的离心率是(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若将函数$f(x)=sin(2x+\frac{π}{6})$的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是(  )
A.$\frac{π}{3}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=lg(x2+ax-a-1)在区间[2,+∞)上单调递增,则实数a的取值范围是(-3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某园艺公司种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了50棵树苗的高度(单位:厘米),并把这些高度列成如下的频数分布表:
  组别[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
  频数   2   4   11   16   13   4
(Ⅰ)在这批树苗中任取一棵,其高度在80厘米以上的概率大约是多少?这批树苗的平均高度大约是多少?
(Ⅱ)为了进一步获得研究资料,标记[40,50)组中的树苗为A,B,[90,100]组中的树苗为C,D,E,F,现从[40,50)组中移出一棵树苗,从[90,100]组中移出两棵树苗,进行试验研究,则[40,50)组的树苗A和[90,100]组的树苗C同时被移出的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知菱形ABCD的边长为2,∠ABC=120°,P、Q分别是其对角线AC、BD上的动点,则$\overrightarrow{AP}$•$\overrightarrow{PQ}$的最大值为$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案