精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知动点P(x,y)(y≤0)到点F(0,2)的距离为d1,到x轴的距离为d2,且d1-d2=2.
(Ⅰ)求点P的轨迹E的方程;
(Ⅱ)若直线l斜率为1且过点(1,0),其与轨迹E交于点M、N,求|MN|的值.
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)利用抛物线的定义,可求点P的轨迹E的方程;
(Ⅱ)直线l:y=x-1,联立x2=-8y(y≤0),利用韦达定理,结合弦长公式,即可求|MN|的值.
解答: 解:(Ⅰ)∵动点P(x,y)(y≤0)到点F(0,2)的距离为d1,到x轴的距离为d2,且d1-d2=2,
∴由抛物线的定义可知,x2=-8y(y≤0);
(Ⅱ)设M(x1,y1),N(x2,y2),
直线l:y=x-1,联立x2=-8y(y≤0),得x2+8x-8=0,
∴x1+x2=-8,x1x2=-8,
|MN|=
1+k2
(x1+x2)2-4x1x2
=
2
(-8)2-4(-8)
=8
3
,.
点评:本题考查抛物线的定义域方程,考查直线与抛物线的位置关系,考查韦达定理的应用,确定抛物线的方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an+1=
2n+1an
an+2n
(n∈N+
(1)证明:数列{
2n
an
}是等差数列;           
(2)求数列{an}的通项公式an
(3)设bn=(2n-1)(n+1)an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,1),
b
=(sin(α-
π
3
),cosα+
π
3
)),且
a
b
,求sin2α+2sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)满足f(2x)=2x+1+1,定义数列{an},a1=1,an+1=f(an)-1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,且3an+1+2Sn=3
(1)求数列{an}的通项公式;
(2)对任意正整数n,是否存在k∈R,使得Sn≥k恒成立?若存在,求是实数k的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如图所示的程序框图,变量a每次赋值后的结果依次记作:a1、a2、a3…an….如a1=1,a2=3….
(Ⅰ)写a3、a4、a5
(Ⅱ)猜想出数列{an}的一个通项公式;
(Ⅲ)写出运行该程序结束输出的a值.(写出过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

求和:Sn=
1
2
+
3
4
+
5
8
+
7
16
+…+
2n-1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC内角A,B,C所对边长分别为a,b,c,面积S=
3
,且
AB
AC
=2.
(Ⅰ)求角A;
(Ⅱ)若c=1+b,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ)且α-β∈(-
π
2
,0),
(Ⅰ)若
a
b
=
3
2
,求α-β的值;
(Ⅱ)若|
a
-
b
|=
10
5
且α=
π
3
,求sinβ的值.

查看答案和解析>>

同步练习册答案