精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,P为线段AD1上的中点,Q为线段PC1上的中点.
(1)求证:DP⊥平面ABC1D1
(2)求证:CQ∥平面BDP.
考点:直线与平面平行的判定,直线与平面垂直的判定
专题:空间位置关系与距离
分析:(1)利用正方体的性质得到AB⊥平面AA1D1D,得到DP⊥AB,又P为AD1的中点,所以DP⊥AD1,由线面垂直的判定定理证明;
(2)连BC1,与B1C相交于H,则QH∥PB,又CH∥PD,QH∩CH=H,利用线面平行的判定定理证明.
解答: 证明(1)因为正方体ABCD-A1B1C1D1中,AB⊥平面AA1D1D,-------(2分)
DP?平面AA1D1D,所以DP⊥AB,-------(3分)
又P为AD1的中点,所以DP⊥AD1,-------(4分)
AB∩AD1=A,所以DP⊥平面ABC1D1---------(6分)
(2)证明:连BC1,与B1C相交于H,则QH∥PB,又CH∥PD,QH∩CH=H,
所以平面QHC∥平面PBD,所以CQ∥平面BDP-------(14分)
点评:本题考查了线面垂直和线面平行的性质定理和判定定理的运用;关键是熟练运用定理.
练习册系列答案
相关习题

科目:高中数学 来源:2014-2015学年山东省潍坊市高一上学期10月月考数学试卷(解析版) 题型:选择题

已知函数,则的值为 ( )

A. 13 B. C.7 D.

查看答案和解析>>

科目:高中数学 来源:2014-2015学年江西省赣州市北校高二1月月考文科数学试卷(解析版) 题型:选择题

已知双曲线与椭圆有相同的焦点,则该双曲线的渐近线方程为( )

(A) (B) (C) (D)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)(x∈R)满足f(-x)=f(x),f(-x)=f(2-x),且当x∈[0,1]时,f(x)=
x3
,又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)-f(x)在[-
1
2
3
2
]上的零点个数为(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0<0,则a的取值范围是(  )
A、(2,+∞)
B、(1,+∞)
C、(-∞,-2)
D、(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x和直线l:y=x+4.
(Ⅰ)求抛物线C上一点到直线l的最短距离;
(Ⅱ)设M为l上任意一点,过M作两条不平行于x轴的直线.若这两条直线与抛物线C都只有一个公共点,这两个公共点分别记为A,B,证明:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{bn}的前n项和为Sn,且b1=
2
+1,S3=3
2
+6
(1)求数列{bn}的通项公式;
(2)证明数列{bn}中任意不同的三项都不可能成为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

用演绎推理证明f(x)=|sinx|是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列定积分
π
2
0
sin2
x
2
dx.

查看答案和解析>>

同步练习册答案