精英家教网 > 高中数学 > 题目详情
2.设函数f(x)是定义在R上的增函数,且f(x)≠0,对于任意的实数x,y都有f(x+y)=f(x)•f(y).
(1)求证:f(x)>0;
(2)若f(1)=2,解不等式:f(3x)>4f(x);
(3)由(1)及题设,写出函数f(x)的一个模型.

分析 (1)由f(x)=f2($\frac{x}{2}$)可得出结论;
(2)不等式等价于f(3x)>f(2)f(x)=f(x+2),再根据f(x)的单调性得出3x>x+2,解出即可;
(3)根据函数性质可知指数函数符合f(x)的要求.

解答 解:(1)∵f(x)≠0,
∴f(x)=f($\frac{x}{2}+\frac{x}{2}$)=f2($\frac{x}{2}$)>0.
(2)∵f(1)=2,∴f(2)=f2(1)=4,
∴4f(x)=f(2)f(x)=f(x+2),
∴f(3x)>f(x+2),
∵f(x)是定义在R上的增函数,
∴3x>x+2,解得x>1.
(3)f(x)=2x

点评 本题考查了函数单调性的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.为了解重庆一中1800名高一学生的身体生长的状况,用系统抽样法抽取60名同学进行检验,将学生从1:1800进行编号,若已知第1组抽取的号码为10,则第3组用简单随机抽样抽取的号码为(  )
A.60B.70C.80D.90

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若实数a,b,c,d满足(b-lna)2+(c-d+2)2=0,则(a-c)2+(b-d)2的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.学校决定把12个参观航天航空博物馆的名额给二(1)、二(2)、二(3)、二(4)四个班级.要求每个班分得的名额不比班级序号少;即二(1)班至少1个名额,二(2)班至少2个名额,…,则分配方案有(  )
A.10种B.6种C.165种D.495种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow a=(-1,1)$,$\overrightarrow b=(3,m)$,$\overrightarrow a∥(\overrightarrow a+\overrightarrow b)$,则m=(  )
A.2B.-2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,PA=PC,∠APC=∠ACB=90°,∠BAC=60°,平面PAC⊥平面ABC.
(1)求证:面PAB⊥面PBC;
(2)求PB与面ABC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某企业为了更好地了解设备改造前后与生产合格品的关系,随机抽取了180件产品进行分析,其中设备改造前的合格品有36件,不合格品有49件,设备改造后生产的合格品有65件,不合格品有30件.根据所给数据:
(1)写出2×2列联表;  (2)判断产品是否合格与设备改造是否有关,说明理由.
 P(K2≥k) 0.0500.010 0.001 
 k 3.841 6.635 10.828
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,
数据支持:(65×49-36×30)2=4431025   101×79×85×95=64430825.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明:AE⊥平面PCD;
(2)求二面角A-PD-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某城市2014年的空气质量状况如表所示:
污染指数T3060100110130140
概率P$\frac{1}{10}$$\frac{1}{6}$$\frac{1}{3}$$\frac{7}{30}$$\frac{2}{15}$$\frac{1}{30}$
其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,则该城市2014年空气质量达到良或优的概率为$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案